
 
 

 

 

 

Faculty In-Charge: 
1. Dr. V.Usha Bala, Asst. Professor  
2. Dr.G.Jagadish, Asst. Professor 
3. Mrs.S.S.N.L.Priyanka, Asst. Professor 

4. Mr.Sk.A.Manoj, Asst. Professor                                         HOD,CSE 
 

 

 

 

 

 
 

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 

  

 
 

 

                                      A 

Laboratory Manual   

                For  
CRYPTOGRAPHY AND 

NETWORK SECURITY LAB 



VISION: 
 

Our vision is to emerge as a world class Computer Science and Engineering 
department through excellent teaching and strong research environment 
that responds swiftly to the challenges of changing computer science 
technology and addresses technological needs of the stakeholders. 

 

 

MISSION: 

To enable our students to master the fundamental principles of computing and 
to develop in them the skills needed to solve practical problems using 
contemporary computer-based technologies and practices to cultivate a 
community of professionals who will serve the public as resources on state-of- 
the-art computing science and information technology. 

 
 

Course outcomes: 
       

1. Understand the process of capturing Network traffic using tools(Ethereal,Wireshark, Tcpdump) 

2. Implement Cryptographic algorithms in C/C++/Java 

3. Understand Buffer Over Flow attacks, Intrusion Detection Systems and Honeypots. 

4 Create applications in Client Server architecture. 

5. Set up secure mail and web communication channels. 

 

 

 



 

 

PROGRAM OUTCOMES (POs): 

 

 

 

 

 

 

 

 

 

 

PROGRAM SPECIFIC OUTCOMES (PSOs): 

 

 

 

 

 

 

 

 

ANIL NEERUKONDA INSTITUTE OF 

TECHNOLOGY AND SCIENCES 

          



 

 

A Laboratory Manual 
For  

CRYPTOGRAPHY AND NETWORK 
SECURITY 
 (CSE 416) 

Semester – 1 
 
 
 

  
 
 

Prepared by 
    1. Dr. V.Usha Bala, Asst. Professor  
    2. Dr.G.Jagadish, Asst. Professor 
    3. Mrs.S.S.N.L.Priyanka,Asst.Professor       
4. Mr.Sk.A.Manoj, Asst. Professor 
 

  

 
DEPARTMENT OF COMPUTER SCIENCE & 

ENGINEERING 

 



 

 

 
 
 

 
S.NO LIST OF EXPERIMENTS CO 

  

1 Working with Sniffers for monitoring network communication 
using  a)Ethereal b)Wire shark c) Snort d) tcp dump. 

1 

2 Implementation and Performance evaluation of various 
cryptographic algorithms  in C/C++ a)DES b)RSA. 

2 

3 Using IP TABLES on Linux and setting the filtering rules. 4 

4 Using open SSL for web server - browser communication. 3 

5 Configuring S/MIME for e-mail communication. 3 

6 Understanding the buffer overflow and format string attacks. 3 

7 Using NMAP for ports monitoring. 4 

8 Secure Socket programming. 3 

 CASE STUDIES  

9 Study of GNU PGP. 3 

10 Study Intrusion Detection Systems and Honey pots. 4 

 

  



 

 

LIST OF INDUSTRY RELEVANT SKILLS: 

 

 

1. Security Incident Handling and Response 

2. Intrusion Detection 

3. Firewall IDS/IPS/Skills 

4. Malware Analysis(Using Wireshark and IPTables) 

 

 

 

GUIDELINES TO TEACHERS 

1.  The teachers should train the students on 

various features of Cyber Security, its advantages 

and disadvantages. 

2. The teachers should also train the students to 

ethically use the internet.  

3. To prepare students for real world security 

challenges. 

 

 

INSTRUCTIONS TO STUDENTS: 
 

1. The students need to learn how to safeguard their information on 

the internet. 

2. The students should be able to overcome various threats and 

attacks on the internet. 

 

 

GUIDELINES TO LAB PROGRAMMERS: 

● Installation of ETHREAL,WIRESHARK and TCPDump packet 

capturing tools. 

● Availability of full time INTERNET with good network 

configuration during lab sessions. 

  



 

 

LAB RUBRICS 

 

CRYPTOGRAPHY & NETWORK SECURITY LAB 

Course Code: CSE416 Credits : 2 

Instruction : 3 Periods/Week Sessional Marks : 50 

End Exam : 3 Hours End Exam Marks : 50 

 

 

Key Performance 
Criteria(KPC) 

(25 pts) 

4-Very Good 3-Good 2-Fair 1-Need to improve 

Problem 
Statement (2) 

The thorough 
knowledge of the 
problem statement.(2) 

The better 
knowledge of the 
problem 
statement(2) 

The basic 
knowledge of the 
problem 
statement(2) 

The partial 
knowledge of the 
problem 
statement.(1) 

Experimental 
procedure 
(Algorithm/Fl
owchart/Tool
s Description) 
(4) 

The experimental 
procedure is explained 
with the relevant 
implementation of the 
Tool.(4) 

The experimental 
procedure is 
explained clearly 
and the details 
are covered.(3) 

The experimental 
procedure is 
explained and few 
details are 
covered.(2) 

The experimental 
procedure is 
explained, some 
minor 
implementation 
details are 
missing.(1) 

Working with 
Tools and 
Simulation(4) 

 

Simulation of the tools 
w.r.t the given Problem 
Statement is executed 
using the respective 
commands/ Source 
code effectively. 
(4) 

 

Simulation of the 
tools w.r.t the 
given Problem 
Statement is 
executed using 
the respective 
commands/ 
Source code.(3) 

 

Simulation of the 
tools w.r.t the 
given Problem 
Statement is 
executed using the 
respective 
commands/ 
Source code  
With tool.(3) 

Simulation of the 
tools w.r.t the given 
Problem Statement 
is executed partially 
using the respective 
commands/ Source 
code.(2) 

Test Case 
Verification 
(3) 

Produces  correct 
output for all 
mentioned test cases 
correctly  in 
implementation 
/simulation(3) 

Produces  correct 
output for 
majority of  test 
cases correctly  in 
implementation 
/simulation(3) 

Produces  correct 
output for few 
important  possibl
e test cases 
correctly  in 
implementation 
/simulation(3) 

Produces  Wrong 
output for most of 
the  test cases in the 
implementation 
/simulation (1) 

Oral 
Presentation/
Viva(5) 

 

In depth knowledge on 
the concept and 
answered  all the 
questions(5) 

Good knowledge 
on the concept 
and answered all 
the questions(4) 

Basic knowledge 
on the concept and 
answered some of 
the questions(3) 

With basic 
knowledge on the 
concept and 
answered few 
questions(2) 



 

 

Presentation / 
Documentatio
n based on 
Observation 
(4) 

 Presented accurately 
all 
the  prescribed  docum
entation on time (4) 

 

Presented all the 
required 
documentation 
on time as per the 
prescribed 
format (3) 

 

Presented 
documents in a 
readable manner 
but not so neatly. 
Submitted 
documents on 
time.(2) 

 

Submitted 
documents in 
ambiguity and not 
on time.(2) 

Code of 
Conduct-
(Courtesy , 
safety and 
ethics based 
on physical 
observation) 
(3) 

 

While conducting the 
procedure, the student 
is in proper dress code, 
always respectful of 
others and leaves the 
area clean.(3) 

 

While conducting 
the procedure, 
the student is in 
proper dress 
code, many times 
respectful of 
others and leaves 
the area clean 
only after being 
reminded.(2) 

While conducting 
the procedure, the 
student is in 
partial dress code, 
sometimes 
respectful of 
others and leaves 
the area clean only 
after being 
reminded.(2) 

While conducting 
the procedure, the 
student is not in 
proper dress code , 
not respectful of 
others and leaves 
the area messy even 
after being 
reminded.(1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRACTICAL 1:  

Working with Sniffers for monitoring network communication using   

a)Ethereal b)Wire shark c) Snort d) TCP dump. 

 

1a. Practical significance of Ethereal: 

(i) One of the best security and network troubleshooting tools available is a 

protocol analyzer (or packet sniffer) named Ethereal. Ethereal runs on both Windows 



 

 

and Linux; it captures all packets promiscuously. Ethereal uses WinPcap to pull 

packets off the network. 

1b. Practical significance of WIRESHARK: 

(i) Wireshark is a network analyzer. It can read and process capture files from a number 

of different products, including other sniffers, routers, and network utilities. It uses the 

popular Promiscuous Capture Library (libpcap)-based capture format and can easily 

interfere with other products that use libpcap. Wireshark possesses an easy-to-read and 

configurable graphical user interface (GUI) along with rich display filter capabilities. 

 

 2. Relevant Program Outcomes: 

  PO-1, 2, 3, 5, 9, 11 

 

 3. Competency and practical skills: 

This practical is expected to develop the following skills: 

a. Practical skill: 

(i) Ability to work with ETHREAL and capture the network packets.  

(ii) Provides an option to select the interface across which one wants to 

capture the packets.  

b. Competency skill: 

(i) Familiarity with the Ethereal packet capture and analyzing the 

network packets. 

(ii) Troubleshoot network problems. 

 

 

 

    4.Pre-requisites : 

♦ Knowledge of Networking and packet tracing. 

♦ You may need special privileges to start a live capture.  

⮚ • You need to choose the right network interface to capture packet 

data from.  

⮚ • You need to capture at the right place in the network to see the 

traffic you want to see. 
 

 

5. Resources required: 



 

 

ETHEREAL/WIRESHARK, 40GB hard disk with minimum of 4 G HZ 

RAM 

S.No  Name of the Resource Broad Specification(Approx.) 

1  Computer System  

1. Processor – 2GHz  

         2. RAM – 4GB  

3. Hard-Drive Space – 40GB  

4. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 
5.Wireshark runs on most UNIX and UNIX-like platforms 

including Linux and most BSD variants. 
6.A supported network card for capturing-Ethernet, IEEE 

802.11 

 

2  Installation of ETHEREAL , WIRESHARK packet capturing tools. 

 

     

6.  Precautions: 

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard; mouse and monitor are properly working with  

3. Ensure that there are no power fluctuations while executing the program.  

4. Safe working conditions will help in preventing injuries to people and damage to computer 

equipment.  

5. A safe work place should be clean, organized, and properly lighted. Everyone must understand and 

follow safety procedures.  

6. Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities at the workplace.    

Power supplies and monitors contain high voltage, handle with care. 

7.  Ensure that packet capturing tool ETHEREAL/WIRESHARK is installed in the system before 

usage. 

8. Ensure the availability of the Internet for the successful execution of these experiments. 

 

 

7. Algorithm/circuit/Diagram/Description with  Sample outputs: 

 

1a. Ethereal: 

● Capturing packets using Ethereal: 
▪ Begin the capture process by selecting “Start” from the Ethereal “Capture” menu , do not 

stop the process. 

▪ Depending on the type of network and the network adapter, you may immediately see packets 

being saved to your machine. On other configurations, you will not see anything until you create some 

network traffic. 



 

 

 

▪ Open a web page, when the web page finished loading, go back to Ethereal and push the stop 

button. Ethereal will process and load summaries of all of the packets sent and received by your machine. 

 

 

● Looking at Packets Captured by Ethereal: 
● Once you have captured a set of packets, Ethereal should present you with a colorful 

window. 

 

1b. Wireshark: 
1. A good approach to network troubleshooting involves several steps such as: 

a.  recognizing the symptoms;  

b. defining the problem,  

c. analyzing the problem,  

d. isolating the problem,  

e. identifying and testing the cause of the problem,  

f. solving the problem, and  

g. verifying that the problem has been solved.  

 

● Capturing packets using Wireshark: 
▪ The following methods can be used to start capturing packets with Wireshark:  

● You can double-click on an interface in the welcome screen.  

● You can select an interface in the welcome screen, then select Capture › Start or click the first 

57 toolbar button.  

● You can get more detailed information about available interfaces using The “Capture Options” 

Dialog Box (Capture › Options…).  

 

 

 

● If you already know the name of the capture interface you can start Wireshark from the 

command line:  

● $ wireshark -i eth0 -k  

● This will start Wireshark capturing on interface eth0.  

● More details can be found at Start Wireshark from the command line.  

 

● Sample Outputs while Viewing: 
 

The “Capture” Section Of The Welcome Screen  

When you open Wireshark without starting a capture or opening a capture file it will display the 

“Welcome Screen,” which lists any recently opened capture files and available capture interfaces. 

Network activity for each interface will be shown in a sparkline next to the interface name. It is 

possible to select more than one interface and capture from them simultaneously. 

 

 



 

 

 
 

 
 

 

 

 

 

 

▪ Begin the capture process by selecting “Start” from the Ethereal “Capture” menu , do not 

stop the process. 

▪ Depending on the type of network and the network adapter, you may immediately see packets 

being saved to your machine. On other configurations, you will not see anything until you create some 

network traffic. 

 

▪ Open a web page, when the web page finished loading, go back to Ethereal and push the stop 

button. Ethereal will process and load summaries of all of the packets sent and received by your machine. 

 

 

● Looking at Packets Captured by Wireshark: 
● Once you have captured a set of packets, Wireshark should present you with a colorful 

window as shown below. 

  



 

 

 

 

 
 

  

 

 

Wireshark’s main window consists of parts that are commonly known from many other GUI programs.  

1. The menu (see The Menu) is used to start actions.  



 

 

2. The main toolbar (see The “Main” Toolbar) provides quick access to frequently used items from the 

menu.  

3. The filter toolbar (see The “Filter” Toolbar) allows users to set display filters to filter which packets 

are displayed (see Filtering Packets While Viewing).  

4. The packet list pane (see The “Packet List” Pane) displays a summary of each packet captured. By 

clicking on packets in this pane you control what is displayed in the other two panes.  

5. The packet details pane (see The “Packet Details” Pane) displays the packet selected in the packet 

list pane in more detail.  

6. The packet bytes pane (see The “Packet Bytes” Pane) displays the data from the packet selected in 

the packet list pane, and highlights the field selected in the packet details pane.  

7. The status-bar shows some detailed information about the current program state and the captured 

data. 

 

Wireshark’s MENU: 
The main menu contains the following items:  

♦ File This menu contains items to open and merge capture files, save, print, or export capture files 

in whole or in part, and to quit the Wireshark application.  

♦ Edit This menu contains items to find a packet, time reference or mark one or more packets, 

handle configuration profiles, and set your preferences; (cut, copy, and paste are not presently 

implemented).  

♦ View This menu controls the display of the captured data, including colorization of packets, 

zooming the font, showing a packet in a separate window, expanding and collapsing trees in packet 

details, ….  

♦ Go This menu contains items to go to a specific packet. 

♦  Capture This menu allows you to start and stop captures and to edit capture filters.  

♦ Analyze This menu contains items to manipulate display filters, enable or disable the dissection 

of protocols, configure user specified decodes and follow a TCP stream.  

♦ Statistics This menu contains items to display various statistic windows, including a summary 

of the packets that have been captured, display protocol hierarchy statistics and much more.  

♦ Telephony This menu contains items to display various telephony related statistic windows, 

including a media analysis, flow diagrams, display protocol hierarchy statistics and much more.  

♦ Wireless This menu contains items to display Bluetooth and IEEE 802.11 wireless statistics. 

Tools This menu contains various tools available in Wireshark, such as creating Firewall ACL Rules.  

♦ Help This menu contains items to help the user, e.g. access to some basic help, manual pages of 

the various command line tools, online access to some of the webpages, and the usual about dialog.  

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

Packet-list pane: 

 

 
 

 

Packet-details pane: 



 

 

 

 
 

Packet bytes pane: 

 

 
 

 

 

 

Capturing LIVE Network data: 
Capturing live network data is one of the major features of Wireshark.  

 

The Wireshark capture engine provides the following features:  

• Capture from different kinds of network hardware such as Ethernet or 802.11.  

• Simultaneously capture from multiple network interfaces.  

• Stop the capture on different triggers such as the amount of captured data, elapsed time, or the number of 

packets. • Simultaneously show decoded packets while Wireshark is capturing. 

 • Filter packets, reducing the amount of data to be captured. 

 • Save packets in multiple files while doing a long term capture, optionally rotating through a fixed number of 

files (a “ringbuffer”). 

 

 The capture engine still lacks the following features:  

• Stop capturing (or perform some other action) depending on the captured data 

 

Compiled Filter Output 

 



 

 

 
 

 

 

 

 

 

 

 

Viewing the Captured Packets: 

 

 
 

 



 

 

 

 
 

 

 

 

 

 

 

Applying Filters: 

 

 
 

 



 

 

 

Display Filter Fields: 

 The simplest display filter is one that displays a single protocol.  

♦ T

o only display packets containing a particular protocol, type the protocol into Wireshark’s display filter 

toolbar.  

♦ F

or example, to only display TCP packets, type tcp into Wireshark’s display filter toolbar. Similarly, to only 

display packets containing a particular field, type the field into Wireshark’s display filter toolbar.  

 

 

♦ F

or example, to only display HTTP requests, type http.request into Wireshark’s display filter toolbar.  

 

♦ Y

ou can filter on any protocol that Wireshark supports. You can also filter on any field that a dissector adds 

to the tree view, if the dissector has added an abbreviation for that field.  

 

♦ A 

full list of the available protocols and fields is available through the menu item View › Internals › Supported 

Protocols.  

 

Comparing Values: 

▪ You can build display filters that compare values using a number of different comparison operators.  

▪ For example, to only display packets to or from the IP address 192.168.0.1, use ip.addr==192.168.0.1. 

 

 

 

 

Filtering TCP packets while Viewing: 

 



 

 

 
 

 

8. Test cases: 
▪ Before reporting any problems, please make sure you have installed the latest version of 

Wireshark and you have good internet connection. 

▪ Mismatch in comparing values for displaying filter fields. 

▪ For example, expression wrong    ip.addr != 1.2.3.4 

▪ Correct expression !(ip.addr == 1.2.3.4) 

 

9.Practical Related Questions: 
▪ Switch off the promiscuous mode from the capture options window and observe 

whether you are still able to receive packets from other devices or not. 

▪ Which Wireshark Filter Can Be Used To Check All Incoming Requests To A Http 

Web Server? 

o HTTP web servers use TCP port 80. Incoming requests to the web server would have 

the destination port number as 80. So the filter tcp.dstport==80. 

 

 

 

10 .Exercise Questions : 
I) Exercise One : 

II) Open “Wireshark”, then use the “File” menu and the “Open” command to open the file 

“Exercise One.pcap”. You should see 26 packets listed. This set of packets describes a 



 

 

‘conversation’ between a user’s client and a central server. This entire conversation happens 

automatically, after a user types something and hits enter.  

III) Look at the packets to answer the following questions in relation to this conversation. In 

answering the following questions, use brief descriptions.  

IV) For example, “In frame X, the client requests a web page, and in frame Y, the server delivers 

the content of the page.” 

a. What is the IP address of the client that initiates the conversation?  

b. Use the first two packets to identify the server that is going to be contacted. List the common 

name, and three IP addresses that can be used for the serve 

V) Exercise Two: 

VI) Open “Wireshark”, then use the “File” menu and the “Open” command to open the file 

“Exercise Two.pcap”. You should see 176 packets listed.  

a. In the first few packets, the client machine is looking up the common name (cname) of a web 

site to find its IP address. What is the cname of this web site? Give two IP addresses for this web 

site.  

b. How many packets/frames does it take to receive the web page (the answer to the first http 

get request only)? 

 

 

PRACTICAL 1c:  
 

1c. Practical significance of SNORT: 

 
Snort is the foremost Open Source Intrusion Prevention System (IPS) in the world. ...  

 

Snort has three primary uses:  

▪ As a packet sniffer like tcpdump,  

▪ as a packet logger — which is useful for network traffic debugging, or  

▪ it can be used as a full-blown network intrusion prevention system. 

 
Snort can be configured to run in three modes:  

• Sniffer mode, which simply reads the packets off of the network and displays them for you in a 

continuous stream on the console (screen).  

• Packet Logger mode, which logs the packets to disk.  

• Network Intrusion Detection System (NIDS) mode, which performs detection and analysis on 

network traffic. This is the most complex and configurable mode. 

 

2. Relevant Program Outcomes: 

  PO-1, 2, 3, 5, 9, 11 

 

3. Competency and practical skills: 
This practical is expected to develop the following skills: 



 

 

c. Practical skill: 

(i) Ability to work with SNORT to capture the network packets and analyze them. 

(ii) To read traces and learn how to write new snort rules. 

d. Competency skill: 

(iii) Configuration of SNORT tool in 3 modes. 

(iv) Troubleshoot network problems and setting up of the Firewall rulesets. 

 

4. Pre-requisites : 

♦ Knowledge of Networking and packet tracing using Wireshark. 

♦ Technical understanding of TCP/IP networking and network architecture. 

♦ Basic familiarity with firewall and IPS concepts. 

♦ Good understanding of IDS and IPS concepts. 

♦ Good knowledge of SNORT CONFIG file. 

 

 

     5. Resources required: 

SNORT 40GB hard disk with minimum of 4 G HZ RAM 

S.No  Name of the Resource Broad Specification(Approx.) 

1  Computer System  

1. Processor – 2GHz  

2. RAM – 4GB  

3. Hard-Drive Space – 40GB  

4. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 

5. SNORT runs on most UNIX and UNIX-like platforms including Linux and most BSD 

variants with VM WARE setup. 
6. A supported network card for capturing-Ethernet, IEEE 802.11 
7. Access to a machine with Wireshark and Snort installed. You are best to do this on a 

personal machine, or even on a VM.  

8. A wired network jack. 
 

2  Installation of SNORT-IPS tool. 

 

 

         6.  Precautions: 

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard; mouse and monitor are properly working with  

3. Ensure that there are no power fluctuations while executing the program.  

4. Safe working conditions will help in preventing injuries to people and damage to computer 

equipment.  



 

 

5. A safe work place should be clean, organized, and properly lighted. Everyone must understand and 

follow safety procedures.  

6. Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities at the workplace.    

Power supplies and monitors contain high voltage, handle with care. 

7.  Ensure that IPS tool SNORT is installed and Configured in the system before usage. 

8. Ensure the availability of the Internet for the successful execution of these experiments. 

 

7. Algorithm/circuit/Diagram/Description with Sample outputs: 

1) SNORT-IPS setup overview: 

 

2)  Snort Installation  

1. Install Snort ∙ cd /usr/src ∙ wget https://www.snort.org/downloads/snort/snort-2.9.7.0.tar.gz ∙ tar -zxf 

snort-2.9.7.0.tar.gz && cd snort-2.9.7.0 ∙ ./configure --enable-sourcefire && make && make install  

2. Create Snort directories: ∙ mkdir /usr/local/etc/snort ∙ mkdir /usr/local/etc/snort/rules ∙ mkdir 

/var/log/snort ∙ mkdir /usr/local/lib/snort_dynamicrules  

3. Create empty rules files: ∙ touch /usr/local/etc/snort/rules/white_list.rules ∙ touch 

/usr/local/etc/snort/rules/black_list.rules ∙ touch /usr/local/etc/snort/rules/local.rules ∙ touch 

/usr/local/etc/snort/rules/snort.rules ∙ touch /usr/local/etc/snort/sid-msg.map  

4. Create snort user and grant privileges: ∙ groupadd snort && useradd -g snort snort ∙ chown snort:snort 

/var/log/snort  

5. Copy snort configuration files: Chapter: PulledPork Installation 6 ∙ cp /usr/src/snort-2.9.7.0/etc/*.conf* 

/usr/local/etc/snort ∙ cp /usr/src/snort-2.9.7.0/etc/*.map /usr/local/etc/snort  

6. Configure Snort (edit snort.conf)  



 

 

∙ vim /usr/local/etc/snort/snort.conf ∙ Line #45 - ipvar HOME_NET 172.26.12.0/22 – make this match 

your internal network; ∙ Line #48 - ipvar EXTERNAL_NET !$HOME_NET ∙ Line #104 - var 

RULE_PATH rules ∙ Line #109 - var WHITE_LIST_PATH rules ∙ Line #110 - var BLACK_LIST_PATH 

rules ∙ Line #293 - add this to the end after “decompress_depth 65535” max_gzip_mem 104857600 ∙ Line 

#521 - add this line - output unified2: filename snort.log, limit 128 ∙ Line #543 - delete or comment out 

all of the “include $RULE_PATH” lines except: ¬ include $RULE_PATH/local.rules ¬ include 

$RULE_PATH/snort.rules – add after local.rules  

 

7. Make sure at line #265 the following rules are uncommented: ∙ preprocessor normalize_ip4 ∙ 

preprocessor normalize_tcp: ips ecn stream ∙ preprocessor normalize_icmp4 ∙ preprocessor normalize_ip6 

∙ preprocessor normalize_icmp6  

8. On line #188 at the end of step #2 of snort.cong add: ∙ config policy_mode:inline  

9. Configure daq at line #159 in snort.cong ∙ config daq: afpacket ∙ config daq_dir: /usr/local/lib/daq ∙ 

config daq_mode: inline ∙ config daq_var: buffer_size_mb=1024  

10. Save changes to snort.conf 

3) Using Snort  

1. Snort in inline mode no database logging (console alerts): ∙ snort -d -A 

console -u snort -g snort -c /usr/local/etc/snort/snort.conf -i eth1:eth2 -

Q  

2. Snort in inline mode no database logging (Logged alerts): ∙ snort -d -A 

full -u snort -g snort -c /usr/local/etc/snort/snort.conf -i eth1:eth2 -Q  

3. Snort in inline mode and database logging (console alerts): ∙ snort -d -A 

console -u snort -g snort -c /usr/local/etc/snort/snort.conf -i eth1:eth2 -

Q & /usr/local/bin/barnyard2 -c /usr/local/etc/snort/barnyard2.conf -d 

/var/log/snort -f snort.log -w /usr/local/etc/snort/bylog.waldo -C 

/usr/local/etc/snort/classification.config  

4. Snort in inline mode and database logging (Logged alerts): ∙ snort -d -A 

full -u snort -g snort -c /usr/local/etc/snort/snort.conf -i eth1:eth2 -Q & 

/usr/local/bin/barnyard2 -c /usr/local/etc/snort/barnyard2.conf -d 

/var/log/snort -f snort.log -w /usr/local/etc/snort/bylog.waldo -C 

/usr/local/etc/snort/classification.config  



 

 

5. Snort in inline mode no database logging no snort status (console alerts): 

∙ snort -q -d -A console -u snort -g snort -c 

/usr/local/etc/snort/snort.conf -i eth1:eth2 -Q 

4) Packet Acquisition 

a) Actions, Limits, and Verdicts Action and verdict counts: 

 show what Snort did with the packets it analyzed. This information is only output in IDS mode (when 

snort is run with the -c option). 

 • Alerts is the number of alert, and block actions processed as determined by the rule actions. Here block 

includes block, drop, and reject actions. Limits arise due to real world constraints on processing time and 

available memory. These indicate potential actions that did not happen:  

• Match Limit counts rule matches were not processed due to the config detection: max queue events 

setting. The default is 5. 

 • Queue Limit counts events couldn’t be stored in the event queue due to the config event queue: max 

queue setting. The default is 8. 

 • Log Limit counts events were not alerted due to the config event queue: log setting. The default is 3. • 

Event Limit counts events not alerted due to event filter limits. 

 • Alert Limit counts events were not alerted because they already were triggered on the session. Verdicts 

are rendered by Snort on each packet: 21 

 • Allow = packets Snort analyzed and did not take action on. 

 • Block = packets Snort did not forward, e.g. due to a block rule. ”Block” is used instead of ”Drop” to 

avoid confusion between dropped packets (those Snort didn’t actually see) and blocked packets (those 

Snort did not allow to pass). 

 • Replace = packets Snort modified, for example, due to normalization or replace rules. This can only 

happen in inline mode with a compatible DAQ. 

 • Whitelist = packets that caused Snort to allow a flow to pass w/o inspection by any analysis program. 

Like blacklist, this is done by the DAQ or by Snort on subsequent packets.  

• Blacklist = packets that caused Snort to block a flow from passing. This is the case when a block TCP 

rule fires. If the DAQ supports this in hardware, no further packets will be seen by Snort for that session. 

If not, snort will block each packet and this count will be higher. 



 

 

 • Ignore = packets that caused Snort to allow a flow to pass w/o inspection by this instance of Snort. Like 

blacklist, this is done by the DAQ or by Snort on subsequent packets. 

 • Int Blklst = packets that are GTP, Teredo, 6in4 or 4in6 encapsulated that are being blocked. These 

packets could get the Blacklist verdict if config tunnel verdicts was set for the given protocol. Note that 

these counts are output only if non-zero. Also, this count is incremented on the first packet in the flow 

that alerts. The alerting packet and all following packets on the flow will be counted under Block. 

 • Int Whtlst = packets that are GTP, Teredo, 6in4 or 4in6 encapsulated that are being allowed. These 

packets could get the Whitelist verdict if config tunnel verdicts was set for the given protocol. Note that 

these counts are output only if non-zero. Also, this count is incremented for all packets on the flow starting 

with the alertingpacket.  

Example: 

==========================================================================

===== Action Stats: Alerts: 0 ( 0.000%) Logged: 0 ( 0.000%) Passed: 0 ( 0.000%) Limits: Match: 0 

Queue: 0 Log: 0 Event: 0 Alert: 0 Verdicts: Allow: 3716022 (100.000%) Block: 0 ( 0.000%) Replace: 0 

( 0.000%) Whitelist: 0 ( 0.000%) Blacklist: 0 ( 0.000%) Ignore: 0 ( 0.000%) 

b) Setting up of RULE SETS: 

set This keyword sets bits to group for a particular flow. When no group specified, set the default group. 

This keyword always returns true.  

Syntax: flowbits:set,bits[,group]  

Usage: flowbits:set,bit1,doc; flowbits:set,bit2&bit3,doc;  

First rule sets bit1 in doc group, second rule sets bit2 and bit3 in doc group. So doc group has bit 1, bit2 

and bit3 set 
 

8. Test cases:  
 

a) Test Case-1: Snort can be tested but before that few rules need to be created to test local data 

packets on the network. Then create some rules to test Snort.  

● First, edit the local.rules file: 

●  nano /etc/snort/rules/local.rules 

 

Creation of sample rules in local.rules file 



 

 

 

Save and close the file. 

● The above rules will generate alerts when someone tries to Ping, FTP or Telnet to the server.  

b) Test Case-2: Now, run Snort in NIDS mode and send alert output to the console:  

● snort -A console -q -c /etc/snort/snort.conf 

 

Generating Alerts in Snort-NIDS mode: 

 

9.Practical Related Questions:  

● Select a website that is not likely to be in your DNS or browser cache. The easiest way to do this is to 

select a site that you do not often visit. We need to create a tracefile. This tracefile will include possibly the ARP 

traces for the default gateway lookup, the DNS query and response for the hostname to IP address mapping, and 

the HTML content transferred over the http connection to the website in question. Select both an HTTP: URL as 

well as an HTTPS. URL to connect to. 

● you also need to determine the IP address of your host. 

● Make sure to save the packet capture to a file for later analysis.  

● Once you have the packet capture file, you will need to write capture filters for the following. 
o  Display all ARP traffic 
o  Display all DNS traffic to/from your host 
o Display all HTTP and HTTPS traffic to/from your host 
 



 

 

10.Exercise Questions: 
 

Practical Exercises on SNORT: 

● log tcp traffic from any port going to ports less than or equal to 6000 

▪ log tcp any any -> 192.168.1.0/24 :6000  
● log tcp traffic from priveleged ports less than or equal to 1024 going to ports greater than or equal 

to 500 

▪ log tcp any :1024 -> 192.168.1.0/24 500:  

● To match any IP address except the one indicated by the listed IP address OR give an ALERT 

message. 

▪ alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 (content: "|00 01 86 a5|"; msg: "external 

mountd access";) 

● For example, it is better to raise an alert on any traffic that originates outside of the local net with 

the negation operator indicated with a "!" 

 

 

 

PRACTICAL 1d:  
 

1d. Practical significance of TCP DUMP: 

 
TCPDump is a very powerful tool because of its strength in capturing packets based on different 

parameters given.  It operates on network layer, so it will be able to capture all packets in and out of the 

machine.  We can use TCPDump to capture and save the packets to a file to analyse it later.  TCPDump 

uses Libcap file for packet capturing. 

 

Tcpdump is a command line utility that allows you to capture and analyze network traffic going through 

your system. It is often used to help troubleshoot network issues, as well as a security tool. 

 

A powerful and versatile tool that includes many options and filters, tcpdump can be used in a variety of 

cases. Since it's a command line tool, it is ideal to run in remote servers or devices for which a GUI is not 

available, to collect data that can be analyzed later. It can also be launched in the background or as a 

scheduled job using tools like cron. 

 

 

2. Relevant Program Outcomes: 

  PO-1, 2, 3, 5, 9, 11 

 

3. Competency and practical skills: 
This practical is expected to develop the following skills: 

a. Practical skill: 

(i) Ability to work with TCPDump to capture the network packets and analyze them. 

(ii) Alert on multiple type of attacks in real-time and troubleshooting. 

b. Competency skill: 

(v) Deployment of TCPDump for looking up hostnames and ports. 



 

 

(vi) Troubleshoot network problems and reverse map IPs to hostnames in the traffic it collects. 

(vii)Alert on multiple type of attacks in real-time and troubleshooting. 

 

4. Pre-requisites : 

♦ Knowledge of Networking and packet tracing using Wireshark. 

♦ Technical understanding of TCP/IP networking and network architecture. 

♦ Basic familiarity with firewall and IPS concepts. 

♦ Good knowledge of TCPDump tool. 

♦ Thorough knowledge of TCP/IP protocol stack, state transitions, handshakes, sequence 

flows, IP Header, UDP Header, TCP Header and the packet details.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     5. Resources required: 

TCPDump 40GB hard disk with minimum of 4 G HZ RAM 

S.No  Name of the Resource Broad Specification(Approx.) 

1  Computer System  

1. Processor – 2GHz  

2. RAM – 4GB  

3. Hard-Drive Space – 40GB  

4. VGA with 1024×768 screen resolution (exact hardware requirement will 

depend upon the distribution that we choose to work with) 

4. 5. TCPDump runs on most UNIX and UNIX-like platforms including Linux. and most BSD 
variants with VM WARE setup. 
6. A supported network card for capturing-Ethernet, IEEE 802.11 
7. Access to a machine with Wireshark and TCPDump installed.  
8. A wired network jack. 

 

2  Installation of Wireshark, TCPDump tool from RPM/ Installing TCPDump from source files. 



 

 

 

 

         6.  Precautions: 

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard; mouse and monitor are properly working with  

3. Ensure that there are no power fluctuations while executing the program.  

4. Safe working conditions will help in preventing injuries to people and damage to computer 

equipment.  

5. A safe work place should be clean, organized, and properly lighted. Everyone must understand and 

follow safety procedures.  

6. Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities at the workplace.    

Power supplies and monitors contain high voltage, handle with care. 

7.  Ensure that IPS tool TCPDump is installed and Configured in the system before usage. 

8. Ensure the availability of the Internet with right network configuration that has interfaces for the 

successful execution of these experiments. 

9. Make sure that the router that is plugged into is configured to receive the packets and is not in unicast 

mode. 

 

 

 

 

    7. Algorithm/circuit/Diagram/Description with Sample outputs: 
● TCPDump man page 

o tcpdump [ -AbdDefhHIJKlLnNOpqStuUvxX# ] [ -B buffer_size ] 

 

         [ -c count ] [ --count ] [ -C file_size ] 

         [ -E spi@ipaddr algo:secret,... ] 

         [ -F file ] [ -G rotate_seconds ] [ -i interface ] 

         [ --immediate-mode ] [ -j tstamp_type ] [ -m module ] 

         [ -M secret ] [ --number ] [ --print ] [ -Q in|out|inout ] 

         [ -r file ] [ -s snaplen ] [ -T type ] [ --version ] 

         [ -V file ] [ -w file ] [ -W filecount ] [ -y datalinktype ] 

         [ -z postrotate-command ] [ -Z user ] 

         [ --time-stamp-precision=tstamp_precision ] 

         [ --micro ] [ --nano ] 

         [ expression ] 

about:blank


 

 

o  
 

 

● Identifying the interface using TCPDump 
o tcpdump -i eth0 

 

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode 

listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes 

 

This is an extremely verbose method of getting all types of traffic and can be difficult to process the 

number of packets that are being transmitted.  
o [root@myvm ~]# tcpdump -i lo 

 

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode 

listening on lo, link-type EN10MB (Ethernet), capture size 96 bytes 

 

● Filtering packets using TCPDump 
 

● To print all packets arriving at or departing from sundown: 

● tcpdump host sundown 

● To print traffic between helios and either hot or ace: 

● tcpdump host helios and \( hot or ace \) 

● To print all IP packets between ace and any host except helios: 

● tcpdump ip host ace and not helios 

● To print all traffic between local hosts and hosts at Berkeley: 

● tcpdump net ucb-ether 

● To print all ftp traffic through internet gateway snup: (note that the expression is quoted to prevent 

the shell from (mis-)interpreting the parentheses): 

● tcpdump 'gateway snup and (port ftp or ftp-data)' 

● To print traffic neither sourced from nor destined for local hosts (if you gateway to one other net, 

this stuff should never make it onto your local net). 

● tcpdump ip and not net localnet 

● To print the start and end packets (the SYN and FIN packets) of each TCP conversation that involves 

a non-local host. 

● tcpdump 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet' 

● To print the TCP packets with flags RST and ACK both set. (i.e. select only the RST and ACK flags 

in the flags field, and if the result is "RST and ACK both set", match) 



 

 

● tcpdump 'tcp[tcpflags] & (tcp-rst|tcp-ack) == (tcp-rst|tcp-ack)' 

● To print all IPv4 HTTP packets to and from port 80, i.e. print only packets that contain data, not, 

for example, SYN and FIN packets and ACK-only packets. (IPv6 is left as an exercise for the reader.) 

● tcpdump 'tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' 

● To print IP packets longer than 576 bytes sent through gateway snup: 

● tcpdump 'gateway snup and ip[2:2] > 576' 

● To print IP broadcast or multicast packets that were not sent via Ethernet broadcast or multicast: 

● tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224' 

● To print all ICMP packets that are not echo requests/replies (i.e., not ping packets): 

● tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply' 

● Checking the available interface for tcpdump: 

o sudo tcpdump -D 

 

 

● Capturing packets on a specific network interface 

o sudo tcpdump -i  <interface name> in below image selected interface is ens33 

o sudo tcpdump -i  ens33 

 

● Capturing limited numbers packets on a specific network interface 

o sudo tcpdump -c <no. of packets>    -i   <interface name> 

o sudo tcpdump  -c 6   -i  ens33 



 

 

 

● Capturing packets on a specific network interface and saving to a Wireshark file 

o sudo tcpdump    -i   <interface name> -s0  -w  < filename.pacp >  

o sudo tcpdump    -i       ens33     -s0  -w s1_handover.pcap 

 

● Applying Filter with specific protocol 

o sudo tcpdump    -i   <interface name> -s0  -w  < filename.pacp >  <protocol> 

o sudo tcpdump    -i  ens33     -s0  -w  s1_setup.pcap sctp    

● Applying multi filter with source IP, specific port and destination IP 

o sudo tcpdump    -i   src <ip address>   port < port number>   dst <ip address> -s0  -w  < 

filename.pacp > 

o sudo tcpdump    -i   src 192.168.3.1   port 36422   dst  192.168.3.100  -s0  -w  s1_setup.pacp  

● Displaying run time packets link level header in HEX and ASCII format 

o sudo tcpdump    -xx    -i   <interface name>  

o sudo tcpdump    -xx    -i  ens33 

● Filtering packets using TCPDump based on Protocol 
o To filter packets based on protocol, specifying the protocol in the command line. For example, 

capture ICMP packets only by using this command: 

o $ sudo tcpdump -i any -c5 icmp 

 

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode 

listening on any, link-type LINUX_SLL (Linux cooked), capture size 262144 bytes 

 

 

● In a different terminal, try to ping another machine: 

 

o $ ping opensource.com 

 



 

 

PING opensource.com (54.204.39.132) 56(84) bytes of data. 

64 bytes from ec2-54-204-39-132.compute-

1.amazonaws.com (54.204.39.132): icmp_seq=1 ttl=47 time=39.6 ms 

 

Back in the tcpdump capture, notice that tcpdump captures and displays only the ICMP-related packets. 

 

09:34:20.136766 IP rhel75 > ec2-54-204-39-132.compute-1.amazonaws.com: 

ICMP echo request, id 20361, seq 1, length 64 

09:34:20.176402 IP ec2-54-204-39-132.compute-1.amazonaws.com > rhel75: 

ICMP echo reply, id 20361, seq 1, length 64 

09:34:21.140230 IP rhel75 > ec2-54-204-39-132.compute-1.amazonaws.com: 

ICMP echo request, id 20361, seq 2, length 64 

09:34:21.180020 IP ec2-54-204-39-132.compute-1.amazonaws.com > rhel75: 

ICMP echo reply, id 20361, seq 2, length 64 

09:34:22.141777 IP rhel75 > ec2-54-204-39-132.compute-1.amazonaws.com: 

ICMP echo request, id 20361, seq 3, length 64 

5 packets captured 

5 packets received by filter 

0 packets dropped by kernel 
 

 

 

● Filtering packets using TCPDump based on Port 
o To filter packets based on the desired service or port, use the port filter 

o $ sudo tcpdump -i any -c5 -nn port 80 

 
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode 

listening on any, link-type LINUX_SLL (Linux cooked), capture size 262144 bytes 

09:58:28.790548 IP 192.168.122.98.39330 > 54.204.39.132.80: 

Flags [S], seq 1745665159, win 29200, options [mss 1460,sackOK,TS 

val 122599140 ecr 0,nop,wscale 7], length 0 

09:58:28.834026 IP 54.204.39.132.80 > 192.168.122.98.39330: 

Flags [S.], seq 4063583040, ack 1745665160, win 28960, 

options [mss 1460,sackOK,TS val 522775728 ecr 122599140,nop,wscale 9], length 0 

09:58:28.834093 IP 192.168.122.98.39330 > 54.204.39.132.80: Flags [.], ack 1, 

win 229, options [nop,nop,TS val 122599183 ecr 522775728], length 0 

09:58:28.834588 IP 192.168.122.98.39330 > 54.204.39.132.80: 

Flags [P.], seq 1:113, ack 1, win 229, options [nop,nop,TS 

val 122599184 ecr 522775728], length 112: HTTP: GET / HTTP/1.1 

09:58:28.878445 IP 54.204.39.132.80 > 192.168.122.98.39330: Flags [.], ack 113, 

win 57, options [nop,nop,TS val 522775739 ecr 122599184], length 0 

5 packets captured 

5 packets received by filter 

0 packets dropped by kernel 

 

 

 

● Filtering packets using TCPDump based on Source IP/hostname 
o You can also filter packets based on the source or destination IP Address or hostname. 
 

$ sudo tcpdump -i any -c5 -nn src 192.168.122.98 

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode 

listening on any, link-type LINUX_SLL (Linux cooked), capture size 262144 bytes 



 

 

10:02:15.220824 IP 192.168.122.98.39436 > 192.168.122.1.53: 59332+ A? 

opensource.com. (32) 

10:02:15.220862 IP 192.168.122.98.39436 > 192.168.122.1.53: 20749+ AAAA? 

opensource.com. (32) 

10:02:15.364062 IP 192.168.122.98.39334 > 54.204.39.132.80: 

Flags [S], seq 1108640533, win 29200, options [mss 1460,sackOK,TS 

val 122825713 ecr 0,nop,wscale 7], length 0 

10:02:15.409229 IP 192.168.122.98.39334 > 54.204.39.132.80: Flags [.], 

ack 669337581, win 229, options [nop,nop,TS val 122825758 ecr 522832372], 

length 0 

10:02:15.409667 IP 192.168.122.98.39334 > 54.204.39.132.80: 

Flags [P.], seq 0:112, ack 1, win 229, options [nop,nop,TS 

val 122825759 ecr 522832372], length 112: HTTP: GET / HTTP/1.1 

5 packets captured 

5 packets received by filter 

0 packets dropped by kernel 

 

8. Test cases:  
1. Test case-1: from specific ip and destined for a specific port 

o find all traffic from 10.5.2.3 going to any host on port 3389. 

o $ sudo tcpdump -nnvvS src 10.5.2.3 and dst port 3389 

2. Test case-2: Find DNS Traffic 

o $ sudo tcpdump -vvAs0 port 53 

 

 

9.Practical Related Questions:  

o Which command line parameter would you use to disable name resolution in tcpdump? 

o When troubleshooting network issues, it is often easier to use the IP addresses and port 

numbers; We can disable name resolution by using the option -n and port resolution with -nn . 

o  How to find traffic using port ranges 

o $ sudo tcpdump portrange 21-23 

 

10. Exercise Questions: 

 
Practical Exercises on TCPDump: 

● Exercise-1: Ignoring packets  

▪ $sudo tcpdump -i eth0 -n -c 5 'port !80' 

▪ The output will be all the incoming network traffic other than port HTTP:80  

● Exercise-2: Show only IP6 traffic 

▪ $sudo tcpdump ip6  

 

    

PRACTICAL 2: Implementation and Performance evaluation of 



 

 

various cryptographic algorithms in C/C++ a)DES b)RSA 

 

2a) Practical significance of DES:  

 
Data encryption standard (DES) has been found vulnerable against very powerful attacks and 

therefore, the popularity of DES has been found slightly on decline. 

 

DES is a block cipher, and encrypts data in blocks of size of 64 bit each, means 64 bits of plain text goes 

as the input to DES, which produces 64 bits of cipher text. The same algorithm and key are used for 

encryption and decryption, with minor differences. The key length is 56 bits.  

We have mentioned that DES uses a 56 bit key. Actually, the initial key consists of 64 bits. However, 

before the DES process even starts, every 8th bit of the key is discarded to produce a 56 bit key. That is 

bit position 8, 16, 24, 32, 40, 48, 56 and 64 are discarded. 

 
 

 

 

 

2. Relevant Program Outcomes: PO 1, PO 2, PO 3, PO 5, PO 9, PO 11  

3. Competency and practical skills :  

The practical is expected to develop the following skills  
1. Ability to encrypt and decrypt the given text using DES algorithm.  

    4. Prerequisites:  

1. Student should have knowledge on Computer Networks 

2. Student should have knowledge on C Programming. 

 



 

 

   

 

 

 

 

 

 

 

  5. Resources required: 

  

S.No  Name of the Resource Broad Specification(Approx.) 

1  Computer System  

1. Processor – 2GHz  

2. RAM – 4GB  

  3. Hard-Drive Space – 20GB  

  4. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 

2  C compiler 

 

6. Precautions:  

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard, mouse and monitor are properly working.  

3. Ensure that there are no power fluctuations while executing the program.  

4. Safe working conditions help prevent injury to people and damage to computer equipment.  

5. A safe work space is clean, organized, and properly lighted. Everyone must understand and follow 

safety procedures.  

6. Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and 

the workplace. Power supplies and CRT monitors contain high voltage.  

 

7. Algorithm/circuit/Diagram/Description:  

Algorithm for Encryption & Decryption: 
 

1. In the first step, the 64 bit plain text block is handed over to an initial Permutation (IP) function. 

2. The initial permutation performed on plain text. 

3. Next the initial permutation (IP) produces two halves of the permuted block; says Left Plain Text 

(LPT) and Right Plain Text (RPT). 

4. Now each LPT and RPT to go through 16 rounds of encryption process. 

5. In the end, LPT and RPT are rejoined and a Final Permutation (FP) is performed on the combined 

block 



 

 

6. The result of this process produces 64 bit cipher text. 

7. Initial Permutation (IP) –  

As we have noted, the Initial permutation (IP) happens only once and it happens before the first round. 

It suggests how the transposition in IP should proceed, as show in figure.  

For example, it says that the IP replaces the first bit of the original plain text block with the 58th bit of 

the original plain text, the second bit with the 50th bit of the original plain text block and so on. 

This is nothing but jugglery of bit positions of the original plain text block. 

8. As we have noted after IP done, the resulting 64-bit permuted text block is divided into two half 

blocks. Each half block consists of 32 bits, and each of the 16 rounds, in turn, consists of the broad level 

steps. 

9. Key transformation –  

We have noted initial 64-bit key is transformed into a 56-bit key by discarding every 8th bit of the initial 

key. Thus, for each a 56-bit key is available. From this 56-bit key, a different 48-bit Sub Key is 

generated during each round using a process called as key transformation. For this the 56 bit key is 

divided into two halves, each of 28 bits. These halves are circularly shifted left by one or two positions, 

depending on the round. 

For example, if the round number 1, 2, 9 or 16 the shift is done by only position for other rounds, the 

circular shift is done by two positions. 

10. After an appropriate shift, 48 of the 56 bit are selected. for selecting 48 of the 56 bits the table 

show in figure given below. For instance, after the shift, bit number 14 moves on the first position, bit 

number 17 moves on the second position and so on. If we observe the table carefully, we will realize 

that it contains only 48 bit positions. Bit number 18 is discarded (we will not find it in the table), like 7 

others, to reduce a 56-bit key to a 48-bit key. Since the key transformation process involves permutation 

as well as selection of a 48-bit sub set of the original 56-bit key it is called Compression Permutation. 

11. Expansion Permutation –  

Recall that after initial permutation, we had two 32-bit plain text areas called as Left Plain Text(LPT) 

and Right Plain Text(RPT). During the expansion permutation, the RPT is expanded from 32 bits to 48 

bits. Bits are permuted as well hence called as expansion permutation. This happens as the 32 bit RPT is 

divided into 8 blocks, with each block consisting of 4 bits. Then, each 4 bit block of the previous step is 

then expanded to a corresponding 6 bit block, i.e., per 4 bit block, 2 more bits are added. 

12. This process results into expansion as well as permutation of the input bit while creating output. 

Key transformation process compresses the 56-bit key to 48 bits. Then the expansion permutation 

process expands the 32-bit RPT to 48-bits. Now the 48-bit key is XOR with 48-bit RPT and resulting 

output is given to the next step, which is the S-Box substitution. 

 
 



 

 

 

8. Test cases:  
1.  Outputs with different inputs must be given and appropriate results must be recorded after 

execution.  

2. Students must also record the errors while executing the program experimenting with different 

inputs. 

9. Sample output:  
Encryption: 
 
After initial permutation: 14A7D67818CA18AD 
After splitting: L0=14A7D678 R0=18CA18AD 
 
Round 1 18CA18AD 5A78E394 194CD072DE8C 
Round 2 5A78E394 4A1210F6 4568581ABCCE 
Round 3 4A1210F6 B8089591 06EDA4ACF5B5 
Round 4 B8089591 236779C2 DA2D032B6EE3 
Round 5 236779C2 A15A4B87 69A629FEC913 
Round 6 A15A4B87 2E8F9C65 C1948E87475E 
Round 7 2E8F9C65 A9FC20A3 708AD2DDB3C0 
Round 8 A9FC20A3 308BEE97 34F822F0C66D 
Round 9 308BEE97 10AF9D37 84BB4473DCCC 
Round 10 10AF9D37 6CA6CB20 02765708B5BF 
Round 11 6CA6CB20 FF3C485F 6D5560AF7CA5 
Round 12 FF3C485F 22A5963B C2C1E96A4BF3 
Round 13 22A5963B 387CCDAA 99C31397C91F 
Round 14 387CCDAA BD2DD2AB 251B8BC717D0 
Round 15 BD2DD2AB CF26B472 3330C5D9A36D 
Round 16 19BA9212 CF26B472 181C5D75C66D 
 
Cipher Text: C0B7A8D05F3A829C 
 
 
 
Decryption: 
 
After initial permutation: 19BA9212CF26B472 
After splitting: L0=19BA9212 R0=CF26B472 
 
Round 1 CF26B472 BD2DD2AB 181C5D75C66D 
Round 2 BD2DD2AB 387CCDAA 3330C5D9A36D 
Round 3 387CCDAA 22A5963B 251B8BC717D0 
Round 4 22A5963B FF3C485F 99C31397C91F 
Round 5 FF3C485F 6CA6CB20 C2C1E96A4BF3 
Round 6 6CA6CB20 10AF9D37 6D5560AF7CA5 
Round 7 10AF9D37 308BEE97 02765708B5BF 
Round 8 308BEE97 A9FC20A3 84BB4473DCCC 
Round 9 A9FC20A3 2E8F9C65 34F822F0C66D 
Round 10 2E8F9C65 A15A4B87 708AD2DDB3C0 



 

 

Round 11 A15A4B87 236779C2 C1948E87475E 
Round 12 236779C2 B8089591 69A629FEC913 
Round 13 B8089591 4A1210F6 DA2D032B6EE3 
Round 14 4A1210F6 5A78E394 06EDA4ACF5B5 
Round 15 5A78E394 18CA18AD 4568581ABCCE 
Round 16 14A7D678 18CA18AD 194CD072DE8C 
 
Plain Text: 123456ABCD132536 

 

10.Practical Related Questions:  

 
1.What is the main purpose of DES?  
2. Can we give inputs in the form of Binary also?  
3. What is the initial Key length taken? 
4. To how many bits the key length of 64- bit key reduced ? 
       5. What is Block Cipher? 
       6. What  is the best way to extract results either Binary or Hexadecimal? 

 

11. Exercise Questions: 
 
 

2b) RSA:  
 

1. Practical significance of 
 RSA Algorithm is used to encrypt and decrypt data in modern computer systems and other 

electronic devices. RSA algorithm is an asymmetric cryptographic algorithm as it creates 2 different 

keys for the purpose of encryption and decryption. It is public key cryptography as one of the keys 

involved is made public. RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman who first 

publicly described it in 1978. 

2. Relevant Program Outcomes: PO 1, PO 2, PO 3, PO 5, PO 9, PO 11  

3. Competency and practical skills :  

The practical is expected to develop the following skills  
1. Ability to encrypt and decrypt the given text using RSA algorithm.  

4. Prerequisites:  

1. Student should have knowledge on Computer Networks 

2. Student should have knowledge on C Programming. 

 

    5. Resources required: 

  

S.No  Name of the Resource Broad Specification(Approx.) 



 

 

1  Computer System  

1. Processor – 2GHz  

2. RAM – 4GB  

3. Hard-Drive Space – 20GB  

4. VGA with 1024×768 screen 

resolution (exact hardware requirement 

will depend upon the  

distribution that we choose to work with) 

2  C compiler 

 

6. Precautions:  

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard, mouse and monitor are properly working.  

3. Ensure that there are no power fluctuations while executing the program.  

4. Safe working conditions help prevent injury to people and damage to computer equipment.  

5. A safe work space is clean, organized, and properly lighted. Everyone must understand and follow 

safety procedures.  

6. Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and 

the workplace. Power supplies and CRT monitors contain high voltage.  

 

7. Algorithm/circuit/Diagram/Description:  

Algorithm for Encryption & Decryption: 
 

RSA involves use of public and private key for its operation. The keys are generated using the following 

steps:- 

1. Two prime numbers are selected as p and q 

2. n = pq which is the modulus of both the keys. 

3. Calculate totient = (p-1)(q-1) 

4. Choose e such that e > 1 and co-prime to totient which means gcd (e, totient) must be equal 

to 1, e is the public key 

5. Choose d such that it satisfies the equation de = 1 + k (totient), d is the private key not known to 

everyone. 

6. Cipher text is calculated using the equation c = m^e mod n where m is the message. 

7. With the help of c and d we decrypt message using equation m = c^d mod n where d is the private 

key. 

Note: If we take the two prime numbers very large it enhances security but requires implementation of 

Exponentiation by squaring algorithm and square and multiply algorithm for effective encryption and 

decryption. For simplicity the program is designed with relatively small prime numbers. 

Test cases:  
1.  Outputs with different inputs must be given and appropriate results must be recorded after 

execution.  



 

 

2. Students must also record the errors while executing the program experimenting with different 

inputs. 

9. Sample output:  
 

 
 
 

10.Practical Related Questions:  

 
1. What happens if large prime numbers are taken as input? 
2. What happens when too small prime numbers are taken as input? 
3. What is the formula for deriving n, e and d? 
4. Is RSA block Cipher or stream Cipher? 
            5. What are the challenges faced by RSA? 
 

11. Exercise Questions: 
 1. Identify the number of shift bits in key generation rounds of 1,2,6  and 9. 
 

 

 

 

 

PRACTICAL 3: Using IP TABLES on Linux and setting the 

filtering rules  

 
1. Practical significance of IP Tables: 

  
IPTables is the name of a firewall system that operates through the command line on Linux. This program 

is mainly available as a default utility on Ubuntu. Administrators often use the IPTables firewall to allow 

or block traffic into their networks. 



 

 

Iptables packet filtering mechanism is organized into three different kinds of 

structures: tables, chains and targets. Network traffic is made up of packets. Iptables identifies the 

packets received and then uses a set of rules to decide what to do with the packets that matches. 

 

 Network traffic is made up of packets. Data is broken up into smaller pieces (called packets), sent 

over a network, then put back together. Iptables identifies the packets received and then uses a set of rules 

to decide what to do with them. 

IPTables filters packets based on: 

● Tables: Tables are files that join similar actions. A table consists of several chains. 

● Chains: A chain is a string of rules. When a packet is received, iptables finds the appropriate table, then 

runs it through the chain of rules until it finds a match. 

● Rules: A rule is a statement that tells the system what to do with a packet. Rules can block one type of packet, 

or forward another type of packet. The outcome, where a packet is sent, is called a target. 

● Targets: A target is a decision of what to do with a packet. Typically, this is to accept it, drop it, or reject it 

(which sends an error back to the sender). 

Tables and Chains 
Linux firewall iptables has four default tables. We will list all four along with the chains each table 

contains. 

1. Filter 

The Filter table is the most frequently used one. It acts as a bouncer, deciding who gets in and out of your 

network. It has the following default chains: 

● Input – the rules in this chain control the packets received by the server. 

● Output – this chain controls the packets for outbound traffic. 

● Forward – this set of rules controls the packets that are routed through the server. 

 

2. Network Address Translation (NAT) 

This table contains NAT (Network Address Translation) rules for routing packets to networks that cannot 

be accessed directly. When the destination or source of the packet has to be altered, the NAT table is used. 

It includes the following chains: 

● Prerouting – this chain assigns packets as soon as the server receives them. 

● Output – works the same as the output chain we described in the filter table. 

● Postrouting – the rules in this chain allow making changes to packets after they leave the output chain. 

3. Mangle 

The Mangle table adjusts the IP header properties of packets. The table has all the following chains we 

described above: 

● Prerouting 

● Postrouting 

● Output 

● Input 

● Forward 

4. Raw 

The Raw table is used to exempt packets from connection tracking. The raw table has two of the chains 

we previously mentioned: 

● Prerouting 



 

 

● Output 

5. Security (Optional) 

Some versions of Linux also use a Security table to manage special access rules. This table 

includes input, output, and forward chains, much like the filter table. 

Targets 
A target is what happens after a packet matches a rule criteria. Non-terminating targets keep matching 

the packets against rules in a chain even when the packet matches a rule. 

With terminating targets, a packet is evaluated immediately and is not matched against another chain. 

The terminating targets in Linux iptables are: 

● Accept – this rule accepts the packets to come through the iptables firewall. 

● Drop – the dropped package is not matched against any further chain. When Linux iptables drop an incoming 

connection to your server, the person trying to connect does not receive an error. It appears as if they are trying to 

connect to a non-existing machine. 

● Return – this rule sends the packet back to the originating chain so you can match it against other rules. 

● Reject – the iptables firewall rejects a packet and sends an error to the connecting device. 

2. Relevant Program Outcomes:  

PO-1, PO-2, PO-3, PO-4, PO-5, PO-9, PO-11 

 

3. Competency and practical skills: 
This practical is expected to develop the following skills: 

 

a. Practical skill: 

(i) Ability to work with IPTables to capture the network packets and analyze them. 

(ii) Filters packets based on Tables, chains, rules and targets. 

 

b. Competency skill: 

(i) Deployment of IPTables for managing the network traffic. 

(ii) Start/stop/restart IPTable Firewalls to monitor the traffic in real-world. 

(iii)Checking and setting new IPTable Firewall rules. 

(iv)Block or Allow Specific IP Address in IPTables Firewall. 

 

4. Pre-requisites : 

♦ Knowledge of Networking and packet tracing using Wireshark. 

♦ Technical understanding of TCP/IP networking and network architecture. 

♦ Basic familiarity with firewall concepts. 

♦ Good knowledge of IPTables tool. 

♦ Thorough knowledge of protocols, IPV4, IPV6, NAT Tables and the packet details.  
♦ Good knowledge of Root privileges, User and Super user account previliges in Linux. 

♦ Good knowledge of firewalld daemon for managing firewall rules. 

♦ A useraccount with sudo previliges for managing the firewall rules. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     5. Resources required: 

IPTables 40GB hard disk with minimum of 4 G HZ RAM 

S.No  Name of the Resource Broad Specification(Approx.) 

1  Computer System  

1. Processor – 2GHz  

2. RAM – 4GB  

3. Hard-Drive Space – 40GB  

4. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 
5. IPTables runs on most UNIX and UNIX-like platforms including Linux.  

      6.A supported network card for capturing-Ethernet, IEEE 802.11 

      7. Access to a machine with Wireshark and IPTables installed.  

8. A wired network jack. 

 

2  Installation of Wireshark, IPTables . 

 

 

         6.  Precautions: 

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard; mouse and monitor are properly working with  

3. Ensure that there are no power fluctuations while executing the program.  

4. Safe working conditions will help in preventing injuries to people and damage to computer 

equipment.  

5. A safe work place should be clean, organized, and properly lighted. Everyone must understand and 

follow safety procedures.  

6. Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities at the workplace.    

Power supplies and monitors contain high voltage, handle with care. 

7.  Ensure that Wireshark and IPTables is installed and Configured in the system before usage. 



 

 

8. Ensure the availability of the Internet with right network configuration that has interfaces for the 

successful execution of these experiments. 

9. Make sure that the router that is plugged into is configured to receive the packets and is not in unicast 

mode. 

 

 

 

 

 

    7. Algorithm/circuit/Diagram/Description with Sample outputs: 

 
A firewall is a set of rules. When a data packet moves into or out of a protected network space, its 

contents (in particular, information about its origin, target, and the protocol it plans to use) are tested 

against the firewall rules to see if it should be allowed through.  

 

 

 

 
 

On the one hand, iptables is a tool for managing firewall rules on a Linux machine. 

On the other hand, firewalld is also a tool for managing firewall rules on a Linux machine. 

 

Basic Syntax for iptables Commands and Options 

sudo iptables [option] <em>CHAIN_rule</em> [-j target] 

Here is a list of some common iptables options: 

● –A ––append – Add a rule to a chain (at the end). 

https://en.wikipedia.org/wiki/Iptables
https://firewalld.org/


 

 

● –C ––check – Look for a rule that matches the chain’s requirements. 

● –D ––delete – Remove specified rules from a chain. 

● –F ––flush – Remove all rules. 

● –I ––insert – Add a rule to a chain at a given position. 

● –L ––list – Show all rules in a chain. 

● –N ––new–chain – Create a new chain. 

● –v ––verbose – Show more information when using a list option. 

● –X ––delete–chain – Delete the provided chain. 

 

 

Iptables is case-sensitive, so make sure you’re using the correct options. 

Configure iptables in Linux 
By default, these commands affect the filters table. If you need to specify a different table, use the –

t option, followed by the name of the table. 

Check Current iptables Status 
To view the current set of rules on your server, enter the following in the terminal window: 

sudo iptables –L 

 
The system displays the status of your chains. The output will list three chains: 

Chain INPUT (policy ACCEPT) 

Chain FORWARD (policy ACCEPT) 

Chain OUTPUT (policy ACCEPT) 

Enable Loopback Traffic 
It’s safe to allow traffic from your own system (the localhost). Append the Input chain by entering the 

following: 

sudo iptables –A INPUT –i lo –j ACCEPT 

This command configures the firewall to accept traffic for the localhost (lo) interface (-i). Now anything 

originating from your system will pass through your firewall. You need to set this rule to allow 

applications to talk to the localhost interface. 



 

 

Allow Traffic on Specific Ports 
These rules allow traffic on different ports you specify using the commands listed below. A port is a 

communication endpoint specified for a specific type of data. 

To allow HTTP web traffic, enter the following command: 

sudo iptables –A INPUT –p tcp ––dport 80 –j ACCEPT 

To allow only incoming SSH (Secure Shell) traffic, enter the following: 

sudo iptables –A INPUT –p tcp ––dport 22 –j ACCEPT 

To allow HTTPS internet traffic, enter the following command: 

sudo iptables –A INPUT –p tcp ––dport 443 –j ACCEPT 

The options work as follows: 

● –p – Check for the specified protocol (tcp). 

● ––dport – Specify the destination port. 

● –j jump – Take the specified action. 

Control Traffic by IP Address 
Use the following command to ACCEPT traffic from a specific IP address. 

sudo iptables –A INPUT –s 192.168.0.27 –j ACCEPT 

Replace the IP address in the command with the IP address you want to allow. 

You can also DROP traffic from an IP address: 

sudo iptables –A INPUT –s 192.168.0.27 –j DROP 

You can REJECT traffic from a range of IP addresses, but the command is more complex: 

sudo iptables –A INPUT –m iprange ––src–range 192.168.0.1–192.168.0.255 -j REJECT 

The iptables options we used in the examples work as follows: 

● –m – Match the specified option. 

● –iprange – Tell the system to expect a range of IP addresses instead of a single one. 

● ––src-range – Identifies the range of IP addresses. 

Dropping Unwanted Traffic 
If you define dport iptables firewall rules, you need to prevent unauthorized access by dropping any 

traffic that comes via other ports: 

sudo iptables –A INPUT –j DROP 

The –A option appends a new rule to the chain. If any connection comes through ports other than those 

you defined, it will be dropped. 



 

 

Delete a Rule 
You can use the –F option to clear all iptables firewall rules. A more precise method is to delete the line 

number of a rule. 

First, list all rules by entering the following: 

sudo iptables –L ––line–numbers 

 

Locate the line of the firewall rule you want to delete and run this command: 

sudo iptables –D INPUT <<em>Number</em>> 

Replace <Number> with the actual rule line number you want to remove. 

Save Your Changes 
Iptables does not keep the rules you created when the system reboots. Whenever you configure iptables 

in Linux, all the changes you make apply only until the first restart. 

$sudo apt-get update 

 

$sudo apt-get install iptables-persistent 

 

8. Test cases:  
1. Test case-1: How to enable IPTables inLinux 

o Install the iptables-services package (if it is not already installed) by running the following 

command: $ yum install iptables-services. 

o Enable the service to start at boot time by running the following commands: $ systemctl enable 

iptables $ systemctl enable ip6tables. 

 

2. Test case-2: Block incoming PING requests on IPTables 
 

o iptables -A INPUT -p icmp -i eth0 -j DROP 

 

 

9.Practical Related Questions:  

o What are the tables used in IPTables” 

o NAT, MANGLE, FILTER and RAW TABLES 

o How to add rules to ACCEPT, REJECT, DENY and DROP ssh service running on 22  in iptables. 

$sudo iptables -A INPUT -s -p tcp --dport 22 -j ACCEPT 

$sudo iptables -A INPUT -s -p tcp --dport 22 -j REJECT 

$sudo iptables -A INPUT -s -p tcp --dport 22 -j DENY 



 

 

$sudo iptables -A INPUT -s -p tcp --dport 22 -j DROP 

10. Exercise Questions: 

 
Practical Exercises on IPTables: 

● Exercise-1:  

● Please setup the following rules in your network environment and test your firewall settings. State 

your rules configured with iptables and document your results with excerpts of your terminal output and 

messages from wireshark. 

 a) Block ICMP requests from the 192.168.1.10 to the server.  

$iptables -A INPUT -p ICMP -s 192.168.1.10 -j DROP  

b) Reject ICMP Requests from 192.168.2.20 to the server. 

$ iptables -A INPUT -p ICMP -s 192.168.2.20 -j REJECT  

c) Reject SSH connections from 192.168.3.30 to the server.  

$iptables -A INPUT -p tcp –dport ssh -s 192.168.3.30 -j REJECT 

d) Block all traffic from computer 192.168.1.10 to the internet. 

$iptables -A FORWARD -s 192.168.1.10 -j DROP 

 

 

PRACTICAL 4. Using open SSL for web server - browser communication 

1. Practical significance: SSL is an open source implementation of the SSL / TLS. It is used to create 

SSL, TLS and HTTPS connections with. When someone want to run a web application with SSL / HTTPS 

then their web server needs a private key, public key and a certificate from them. The private key enables 

their server to identify itself, and the certificate proves that the public key actually belongs to the server. 

2. Relevant Program Outcomes:  

PO 1, PO 2, PO 3, PO 5, PO 9, PO 11  

3. Competency and practical skills :  

The practical is expected to make the student to understand the significance of certificates and how to 

use them for identification purpose. 

4. Prerequisites:  
1. Student should have knowledge on basic internet usage. 

2. Student should have knowledge on e-mail communication and encryption mechanisms. 

 

 

 

 

 

 

 

 

 



 

 

 

 5. Resources required: 

  

S. No  Name of the Resource Broad Specification(Approx.) 

1  Computer System  

1. Processor – 2GHz  

2. RAM – 4GB  

  3. Hard-Drive Space – 20GB  

  4. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 

2  Internet Connection. 

 

 

 

6. Precautions:  

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard, mouse and monitor are properly working.  

3. Ensure that there is uninterrupted internet connection is available. 

4. A safe work space is clean, organized, and properly lighted.  

5.Follow electrical safety guidelines to prevent electrical fires,  

    injuries, and fatalities in the home and the workplace. Power  

    supplies and CRT monitors contain high voltage.  

7. Algorithm/circuit/Diagram/Description:  

The private key and public key is created by user. The certificate is created by a certificate authority (CA). 

Here is the process you go through to obtain a private key, public key and certificate from a CA: 

1. Generate a private key. 

2. Generate a public key matching the private key (if that was not already done in step 1). 

3. Generate a certificate signing request. 

4. Send the certificate signing request to a certificate authority (CA). 

5. Receive certificate from certificate authority. 

6. Install private key and certificate in your web server software. 

 

Generating a Private Key 

The first step is to generate a private key used for public key / private key (asymmetric) encryption. This 

OpenSSL command creates a private key which is 2048 bits long, and protected with a triple DES 

encryption. When executed OpenSSL will prompt you to enter a password to use for the triple DES 

encryption. 



 

 

openssl genrsa -des3 -out privatekey.pem 2048 

The private key will be written to a file. The private key file will be named privatekey.pem and will 

located in the same directed from which you exected the openssl command. If you do not want the private 

key protected with encryption, leave out the -des3 part. This command creates a private key which is 2048 

bits long without password encryption of the key file: 

openssl genrsa -out privatekey.pem 2048 

Generating a Certificate Signing Request 

The second step is to generate a certificate signing request from the private key. Here is the OpenSSL 

command that creates a certificate signing request: 

openssl req -new -key privatekey.pem -out certificate-signing-request.csr 

The private key is the file named privatekey.pem. That is the output of the private key generation 

command earlier. The certificate signing request file is the certificate-signing-request.csr. This is the file 

you will eventually send to a CA. 

Sending the Certificate Signing Request to a CA 

Once you have a certificate signing request (file) you can send it to a certificate authority (CA). The CA 

will send you a certificate file back. 

Some intermediate CAs may send you several certificates back. One is your certificate, and the rest is the 

certificate chain needed to trust your certificate. The certificate chain is a chain of certificates from a root 

CA own to the CA you have used. Web servers typically need all of the certificates in the certificate chain. 

See your specific web server for more information on how to provide it with the full certificate chain. 

Generating a Self-signed Test Certificate 

In case you just want to test your web application with HTTPS, you can also generate a self signed 

certificate with OpenSSL. Here is how that is done: 

openssl req -new -x509 -key privkey.pem -out self-signed-certificate.pem -days 1095 

Notice though, that the browsers will show security warnings when you visit a website with a self signed 

certificate. The browser will allow you to choose to trust the certificate so you can test that everything 

works with HTTPS. 

Installing Private Key and Certificate in Web Server 

Once you have obtained the certificate (+ optionally a certificate chain) you need to install the private key 

and certificate (+optionally the certificate chain) in your web server. 

8. Test cases:  
1.  Try to use another private key instead of original one.  

2.  Students must also record the errors while executing the program experimenting with  

    different inputs. 



 

 

9. Sample output:  

  
10. Practical Related Questions:  
 
1. What is SSL certificate? 
2. How SSL uses both asymmetric and symmetric encryption? 
3. What is a Certificate Signing Request (CSR)? 
4. Discuss some public-key encryption algorithms used in SSL. 
5. What are the authentication levels of SSL/TLS certificates? 

 

11. Exercise Related Questions:  

 
    1. Configure openssl x509 extensions for server certificate. 

      2. Configure Apache with SSL 

 
  

 

        

 

 

 

PRACTICAL-5:  Configuring S/MIME for e-mail communication. 

 

1. Practical significance: S/MIME is an acronym for Secure/Multipurpose Internet Mail Extensions. 

It references a type of public encryption and signing of MIME data  to verify a sender’s identity. With 

S/MIME, it is possible to send and receive encrypted emails.  

2. Relevant Program Outcomes:  
PO 1, PO 2, PO 3, PO 5, PO 9, PO 11  

3. Competency and practical skills:  



 

 

The practical is expected to make the student to understand the significance of certificates and how to 

use them for identification purpose. 

4. Prerequisites:  
1. Student should have knowledge on basic internet usage. 

2. Student should have knowledge on e-mail communication and encryption mechanisms. 

 

 5. Resources required: 

  

S. No  Name of the Resource Broad Specification(Approx.) 

1  Computer System  

1. Processor – 2GHz  

2. RAM – 4GB  

  3. Hard-Drive Space – 20GB  

  4. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 

2  Internet Connection. 

 

 

 

 

 

 

 

 

6. Precautions:  

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard, mouse and monitor are properly working.  

3. Ensure that there is uninterrupted internet connection is available. 

4. A safe work space is clean, organized, and properly lighted.  

5.Follow electrical safety guidelines to prevent electrical fires,  

    injuries, and fatalities in the home and the workplace. Power  

    supplies and CRT monitors contain high voltage.  

 

7. Algorithm/circuit/Diagram/Description:  
 

Encryption process 

1. Once the sender clicks on Send, the original unencrypted message is captured. 

2. The recipient's public key is used to encrypt the original message. At the end of the process, an 

encrypted version of the original message is produced.  

3. The encryption message replaces the original message. 



 

 

4. The email is sent to the recipient. 
 

Decryption process 

1. The recipient receives the email. 

2. The encrypted message is retrieved. 

3. The recipient's private key is used to decrypt the encrypted message. 

4. The original message is obtained and displayed to the recipient.  

 

Digital signing process 

1. Once the sender clicks on Send, the original message is captured. 

2. The message hash is calculated. 

3. The sender's private key is used to encrypt the hash value. 

4. The encrypted hash value is added to the email. 

5. The email is sent to the recipient. 

 

Signature verification process 

1. The recipient receives the digitally signed email. 

2. The original message is obtained and its hash value is calculated. 

3. The encrypted hash is retrieved from the email. 

4. The encrypted hash is decrypted using the sender's public key.  

5. The decrypted hash and the hash value calculated from the original message obtained are 

compared. If the values match, the signature is verified.  

How to Enable S/MIME Gmail: 

1. Log into an Administrator Account. Non-admin accounts cannot open the admin console 

needed to set up a hosted S/MIME encryption solution. 

2. Go to User Settings. From the Admin console’s Home page, select Apps > G Suite > Gmail > 

User Settings. 

3. Select the Domain or Organization to Configure. This will be found on the left of the screen, 

under Organizations. 

4. Select the “Enable S/MIME” Box. There should be a box with the setting that you can enable 

with a click. 

5. Allow Users to Upload Certificates (Optional). You can allow users to upload their own 

S/MIME certificates as an option. 

 

6. Set up Root Certificate Management (Optional). You can manage the root certificates used for 

S/MIME email encryption by: 

1. Clicking Add next to Accept these additional Root Certificates for specific domains. 

2. Clicking on Upload Root Certificate. 

3. Browsing to find the certificate file and selecting Open. A verification message should appear. 

Otherwise, an error message may appear. 

4. Under Encryption level, choose the encryption level to use with the selected certificate. 

5. Under Address list, enter at least one domain that will use the uploaded root certificate. 

6. Click Save. 



 

 

7. Repeat these steps for each additional certificate chain. 

7. Does Your Domain/Organization NEED to Enable Secure Hash Algorithm 1? If so, you may 

need to select the Allow SHA-1 globally box. Otherwise, this is not recommended by Google. 

8. Click Save. Save your settings so they don’t get lost. 

9. Have All Users Reload Gmail. After enabling hosted S/MIME Gmail encryption, users will need 

to reload their Gmail client to see the change. 

 

10. Upload S/MIME Certificates. You can upload personal S/MIME certificates in Gmail if you: 

1. Go to Settings. 

2. Click on the Accounts tab. 

3. Click on Edit Info in the Send mail as area. A window should appear with the “enhanced 

encryption” option—if this was enabled in Step 5 listed above. 

4. Click on Upload a personal certificate. 

5. Select the certificate and click Open. A password prompt should appear if this works. 

6. Enter the password and click on Add certificate. 

11. Have Users Exchange S/MIME Keys. To decrypt encrypted messages, users in the organization 

will need to exchange S/MIME encryption keys. This can be done by: 

1. Sending an S/MIME encrypted message to the recipient with a digital signature that includes the 

user’s public key. This can then be used to send S/MIME-encrypted emails. 

2. Asking recipients to send a message. The S/MIME signed message will allow the encryption key 

to be automatically stored so future messages will be encrypted. 

 

8. Test cases:  
1.  Try to use another private key instead of original one for decryption process.  

2.  Use digital signature verification with different public keys. 

9. Sample output:  

 



 

 

 

 

 

 

 

10. Practical Related Questions:  
 
1. Explain the purpose of S/MIME? 
2. What are the certificates involved in S/MIME? 
3. What is an email digital signature certificate? 
4. Discuss functions of S/MIME. 
5. What happens if we lose the certificate? 

 

11. Exercise Related Questions:  

 
    1. Configure S/MIME in outlook. 

      2. Configure S/MIME in yahoo mail. 

 

PRACTICAL 06:  Understanding the buffer overflow and 

format string attacks 
 

1. Practical significance:  
The program uses an improperly bounded format string, allowing it to write outside the bounds of 

allocated memory. This behavior could corrupt data, crash the program, or lead to the execution of 

malicious code. 

 

2. Relevant Program Outcomes: PO1, PO2, PO 3, PO 4, PO 9  



 

 

3. Competency and practical skills :  

The practical is expected to develop the following skills  
1. Ability to study and understand Buffer overflow  and format string attacks.  

    4. Prerequisites:  

1. Student should have knowledge on Computer Networks 

2. Student should have knowledge on C Programming. 

 

     

 

 

 

 

 

5. Resources required: 

  

S.No  Name of the Resource Broad Specification(Approx.) 

1  Computer System  

1. Processor –  2.8 GHz  

2. RAM – 4 GB   

  3. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 

2  Internet 

 

6. Precautions:  

1. Check whether the buffer is overflow after attack in RAM 

2. Ensure the RAM and ROM are properly working.  

3. Ensure that there are no power fluctuations while executing the program.  

4. Safe working conditions help prevent injury to people and damage to computer equipment.  

5. A safe work space is clean, organized, and properly lighted. Everyone must understand and follow 

safety procedures.  

 

7. Algorithm/circuit/Diagram/Description: 

1. Reading from the stack. 



 

 

2. Writing to the stack. 

3. Format String Attack Detection & Defenses 

 

 

 

8. Program: 

#include<stdio.h> 

  

int main(int argc, char** argv) 

{ 

 char buffer[100]; 

 strncpy(buffer, argv[1], 100); 

  

 // We are passing command line 

 // argument to printf 

 printf(buffer); 

  return 0; 

}  

9. Test Cases: 

Case1: $ ./a.out "%p %p %p %p %p %p %p %p %p %p %p %p %p %p %p" 

0xffffdddd 0x64 0xf7ec1289 0xffffdbdf 0xffffdbde (nil) 0xffffdcc4 0xffffdc64 (nil) 

0x25207025 0x70252070 0x20702520 0x25207025 0x70252070 0x20702520. 

Case 2: At about 10 arguments up the stack, we can see a repeating pattern of 

0x252070 – those are our %ps on the stack! We start our string with AAAA to see 

this more explicitly: 



 

 

  

Case 3:      $ ./a.out "AAAA%p %p %p %p %p %p %p %p %p %p" 

AAAA0xffffdde8 0x64 0xf7ec1289 0xffffdbef 0xffffdbee (nil) 0xffffdcd4 0xffffdc7 

Case 4:    $ ./a.out 'AAAA%10$p' 

AAAA0x41414141 

 

10.Practical Related Questions:  

 
1. What happens if buffer size is reachers to 256 Bytes, when RAM size is 1GB ? 

2. Explain Buffer overflow attack when sufficient number of memory addresses are allocated? 

3.   Compare and contrast format string attacks with sketch? 

 

11. Exercise Related Questions:  

 
    1. Write a C program to implement  Buffer overflow to create attack to victim? 

      2. Write a C program to implement Format string attack and deploy in LAN? 

 

 

 

PRACTICAL 07:  Understanding NMAP for ports monitoring 

 

1.Practical significance:  
Nmap is now one of the core tools used by network administrators to map their networks. The 

program can be used to find live hosts on a network, perform port scanning, ping sweeps, OS 

detection, and version detection 

 

2. Relevant Program Outcomes: PO1, PO2, PO3 

3. Competency and practical skills :  

The practical is expected to develop the following skills  
1. Ability to study and understand NMAP for port monitoring  

  

4. Prerequisites:  

1. Student should have knowledge on Computer Networks 

2. Student should have knowledge on cyber security. 



 

 

 

 

 

 

 

 

 

    5. Resources required: 

  

S.No  Name of the Resource Broad Specification(Approx.) 

1  Computer System (multi processor) 

1. 4 Processors –  2.8 GHz  

2. RAM – 4 GB   

  3. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 

2  Internet 

 

6. Precautions:  

1. Check whether the computer is vulnerable or not? 

2. Ensure the NMAP tool is properly working.  

3. Ensure that there are penetration happened on victim machine while executing the program.  

4. Safe working conditions help prevent injury to people and damage to computer equipment.  

5. A safe work space is clean, organized, and properly lighted. Everyone must understand and follow 

safety procedures.  

 

7. Algorithm/circuit/Diagram/Description: 

ALGORITHM: 

1. Download the Nmap installer. This can be found for free from the developer's website.  

2. Install Nmap. Run the installer once it is finished downloading. ... 

3. Run the “Nmap – Zenmap” GUI program. ... 



 

 

4. Enter in the target for your scan. ... 

5. Choose your Profile. ... 

6. Click Scan to start scanning. ... 

7. Read your results. 

8. Program/ Commands: 

COMMANDS: 

Nmap Port Scanning Commands 

The “–open” parameter 

In any of the commands below, you can specify the “–open” parameter in your Nmap 

command to have Nmap only show you ports with an “Open” state. 

 nmap –open [ip_address] 

Scanning a single port 

nmap -p 80 [ip_address] 

This command will initiate a default scan against the target host and look for port 80. 

9. Test Cases: 

 

10.Practical Related Questions:  

1. HOw do you perform Govt. websites port monitoring using nmap 

2. DIfferentiate between Active ports and passive ports? 



 

 

11. Exercise Related Questions:  

1. Deploy NMAP tool in any GMAIL account? 

2. COnfigure listening port where exploit is present? 

 
     

 

 

 

 

 

 

 

 

 

 

PRACTICAL 08:  Secure Socket Programming 

 

1.Practical significance:  
Secure Socket Layer (SSL) provides security to the data that is transferred between web browser and 

server. SSL encrypts the link between a web server and a browser which ensures that all data passed 

between them remains private and free from attack. Secure Socket Layer Protocols: SSL record 

protocol. Handshake protocol. 

 

2. Relevant Program Outcomes: PO1, PO2, PO3,PO5 

3. Competency and practical skills :  

The practical is expected to develop the following skills  
1. Ability to study and understand secure sockets at client and server.  

  

4. Prerequisites:  

1. Student should have knowledge on Computer Networks 

2. Students should have knowledge on client server programming. 

 

5. Resources required: 

  

S.No  Name of the Resource Broad Specification(Approx.) 



 

 

1  Two Computer Systems (multi processor) 

1. 4 Processors –  2.8 GHz  

2. RAM – 4 GB   

  3. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 

2  Internet - Local Area Network 

 

6. Precautions:  

1. Check whether the computer is secure or not? 

2. Ensure the Socket library  is properly working.  

3. Ensure that there is a either peer programming is  effective or Client -server is effective. 

4. Safe working conditions help prevent injury to people and damage to computer equipment.  

5. A safe work space is clean, organized, and properly lighted. Everyone must understand and follow 

safety procedures.  

 

7. Algorithm/circuit/Diagram/Description: 

ALGORITHM: 

Steps involved in SSL handshake: 

1.The client sends the server the client's SSL version number, cipher settings, 

randomly generated data, and other information the server needs to communicate with 

the client using SSL. 

2.The server sends the client the server's SSL version number, cipher settings, 

randomly generated data, and other information the client needs to communicate with 

the server over SSL. The server also sends its own digital certificate and, if the client 

is requesting a server resource that requires client authentication, requests the client's 

digital certificate. 

3.The client uses the information sent by the server to authenticate the server. If the 

server cannot be authenticated, the user is warned of the problem that an encrypted 

and authenticated connection cannot be established. If the server can be successfully 

authenticated, the client proceeds. 

4.Using all data generated in the handshake so far, the client creates the premaster 

secret for the session, encrypts it with the server's public key (obtained from the 

server's digital certificate), and sends the encrypted premaster secret to the server. 



 

 

5.If the server has requested client authentication (an optional step in the handshake), 

the client also signs another piece of data that is unique to this handshake and known 

by both the client and server. In this case the client sends both the signed data and the 

client's own digital certificate to the server along with the encrypted premaster secret. 

6.If the server has requested client authentication, the server attempts to authenticate 

the client. If the client cannot be authenticated, the session is terminated. If the client 

can be successfully authenticated, the server uses its private key to decrypt the 

premaster secret, then performs a series of steps which the client also performs, 

starting from the same premaster secret to generate the master secret. 

7.Both the client and the server use the master secret to generate session keys which 

are symmetric keys used to encrypt and decrypt information exchanged during the 

SSL session and to verify its integrity. 

8.The client informs the server that future messages from the client will be encrypted 

with the session key. It then sends a separate encrypted message indicating that the 

client portion of the handshake is finished. 

9.The server sends a message to the client informing it that future messages from the 

server will be encrypted with the session key. It then sends a separate encrypted 

message indicating that the server portion of the handshake is finished. 

10.The SSL handshake is now complete, and the SSL session has begun. The client 

and the server use the session keys to encrypt and decrypt the data they send to each 

other and to validate its integrity. 

 

8. Program/ Commands: 

/* Server Socket */ 

#include <errno.h> 

#include <unistd.h> 

#include <malloc.h> 

#include <string.h> 

#include <arpa/inet.h> 

#include <sys/socket.h> 

#include <sys/types.h> 

#include <netinet/in.h> 



 

 

#include <resolv.h> 

#include "openssl/ssl.h" 

#include "openssl/err.h" 

  

#define FAIL -1 

  

int OpenListener(int port) 

{   int sd; 

 struct sockaddr_in addr; 

  

 sd = socket(PF_INET, SOCK_STREAM, 0); 

 bzero(&addr, sizeof(addr)); 

 addr.sin_family = AF_INET; 

 addr.sin_port = htons(port); 

 addr.sin_addr.s_addr = INADDR_ANY; 

 if ( bind(sd, (struct sockaddr*)&addr, sizeof(addr)) != 0 ) 

 { 

     perror("can't bind port"); 

     abort(); 

 } 

 if ( listen(sd, 10) != 0 ) 

 { 

     perror("Can't configure listening port"); 

     abort(); 

 } 

 return sd; 



 

 

} 

  

int isRoot() 

{ 

 if (getuid() != 0) 

 { 

     return 0; 

 } 

 else 

 { 

     return 1; 

 } 

  

} 

SSL_CTX* InitServerCTX(void) 

{   SSL_METHOD *method; 

 SSL_CTX *ctx; 

  

 OpenSSL_add_all_algorithms();  /* load & register all cryptos, etc. */ 

 SSL_load_error_strings();   /* load all error messages */ 

 method = TLSv1_2_server_method();  /* create new server-method instance */ 

 ctx = SSL_CTX_new(method);   /* create new context from method */ 

 if ( ctx == NULL ) 

 { 

     ERR_print_errors_fp(stderr); 

     abort(); 



 

 

 } 

 return ctx; 

} 

  

void LoadCertificates(SSL_CTX* ctx, char* CertFile, char* KeyFile) 

{ 

 /* set the local certificate from CertFile */ 

 if ( SSL_CTX_use_certificate_file(ctx, CertFile, SSL_FILETYPE_PEM) <= 0 

) 

 { 

     ERR_print_errors_fp(stderr); 

     abort(); 

 } 

 /* set the private key from KeyFile (may be the same as CertFile) */ 

if ( SSL_CTX_use_PrivateKey_file(ctx, KeyFile, SSL_FILETYPE_PEM) <= 0 ) 

 { 

     ERR_print_errors_fp(stderr); 

     abort(); 

 } 

 /* verify private key */ 

 if ( !SSL_CTX_check_private_key(ctx) ) 

 { 

     fprintf(stderr, "Private key does not match the public certificate\n"); 

     abort(); 

 } 

} 



 

 

  

void ShowCerts(SSL* ssl) 

{   X509 *cert; 

 char *line; 

  

 cert = SSL_get_peer_certificate(ssl); /* Get certificates (if available) */ 

 if ( cert != NULL ) 

 { 

     printf("Server certificates:\n"); 

     line = X509_NAME_oneline(X509_get_subject_name(cert), 0, 0); 

     printf("Subject: %s\n", line); 

     free(line); 

     line = X509_NAME_oneline(X509_get_issuer_name(cert), 0, 0); 

     printf("Issuer: %s\n", line); 

     free(line); 

     X509_free(cert); 

 } 

 else 

     printf("No certificates.\n"); 

} 

  

void Servlet(SSL* ssl) /* Serve the connection -- threadable */ 

{   char buf[1024]; 

 char reply[1024]; 

 int sd, bytes; 



 

 

 const char* 

HTMLecho="<html><body><pre>%s</pre></body></html>\n\n"; 

  

 if ( SSL_accept(ssl) == FAIL )  /* do SSL-protocol accept */ 

     ERR_print_errors_fp(stderr); 

 else 

 { 

     ShowCerts(ssl);     /* get any certificates */ 

     bytes = SSL_read(ssl, buf, sizeof(buf)); /* get request */ 

     if ( bytes > 0 ) 

     { 

         buf[bytes] = 0; 

         printf("Client msg: \"%s\"\n", buf); 

         sprintf(reply, HTMLecho, buf);   /* construct reply */ 

         SSL_write(ssl, reply, strlen(reply)); /* send reply */ 

     } 

     else 

         ERR_print_errors_fp(stderr); 

 } 

 sd = SSL_get_fd(ssl);    /* get socket connection */ 

 SSL_free(ssl);      /* release SSL state */ 

 close(sd);       /* close connection */ 

} 

  

int main(int count, char *strings[]) 

{   SSL_CTX *ctx; 



 

 

 int server; 

 char *portnum; 

  

 if(!isRoot()) 

 { 

     printf("This program must be run as root/sudo user!!"); 

     exit(0); 

 } 

 if ( count != 2 ) 

 { 

     printf("Usage: %s <portnum>\n", strings[0]); 

     exit(0); 

 } 

 SSL_library_init(); 

  

 portnum = strings[1]; 

 ctx = InitServerCTX();     /* initialize SSL */ 

 LoadCertificates(ctx, "mycert.pem", "mycert.pem"); /* load certs */ 

 server = OpenListener(atoi(portnum)); /* create server socket */ 

 while (1) 

 {   struct sockaddr_in addr; 

     socklen_t len = sizeof(addr); 

     SSL *ssl; 

  

     int client = accept(server, (struct sockaddr*)&addr, &len);  /* accept 

connection as usual */ 



 

 

     printf("Connection: %s:%d\n",inet_ntoa(addr.sin_addr), 

ntohs(addr.sin_port)); 

     ssl = SSL_new(ctx);           /* get new SSL state with context */ 

     SSL_set_fd(ssl, client);   /* set connection socket to SSL state */ 

     Servlet(ssl);      /* service connection */ 

 } 

 close(server);       /* close server socket */ 

 SSL_CTX_free(ctx);      /* release context */ 

} 

  

//SSL-Client.c 

#include <stdio.h> 

#include <errno.h> 

#include <unistd.h> 

#include <malloc.h> 

#include <string.h> 

#include <sys/socket.h> 

#include <resolv.h> 

#include <netdb.h> 

#include <openssl/ssl.h> 

#include <openssl/err.h> 

  

#define FAIL -1 

  

int OpenConnection(const char *hostname, int port) 

{   int sd; 



 

 

 struct hostent *host; 

 struct sockaddr_in addr; 

  

 if ( (host = gethostbyname(hostname)) == NULL ) 

 { 

     perror(hostname); 

     abort(); 

 } 

 sd = socket(PF_INET, SOCK_STREAM, 0); 

 bzero(&addr, sizeof(addr)); 

 addr.sin_family = AF_INET; 

 addr.sin_port = htons(port); 

 addr.sin_addr.s_addr = *(long*)(host->h_addr); 

 if ( connect(sd, (struct sockaddr*)&addr, sizeof(addr)) != 0 ) 

 { 

     close(sd); 

     perror(hostname); 

     abort(); 

 } 

 return sd; 

} 

  

SSL_CTX* InitCTX(void) 

{   SSL_METHOD *method; 

 SSL_CTX *ctx; 

  



 

 

 OpenSSL_add_all_algorithms();  /* Load cryptos, et.al. */ 

 SSL_load_error_strings();   /* Bring in and register error messages */ 

 method = TLSv1_2_client_method();  /* Create new client-method instance */ 

 ctx = SSL_CTX_new(method);   /* Create new context */ 

 if ( ctx == NULL ) 

 { 

     ERR_print_errors_fp(stderr); 

     abort(); 

 } 

 return ctx; 

} 

  

void ShowCerts(SSL* ssl) 

{   X509 *cert; 

 char *line; 

  

 cert = SSL_get_peer_certificate(ssl); /* get the server's certificate */ 

 if ( cert != NULL ) 

 { 

     printf("Server certificates:\n"); 

     line = X509_NAME_oneline(X509_get_subject_name(cert), 0, 0); 

     printf("Subject: %s\n", line); 

     free(line);    /* free the malloc'ed string */ 

     line = X509_NAME_oneline(X509_get_issuer_name(cert), 0, 0); 

     printf("Issuer: %s\n", line); 

     free(line);    /* free the malloc'ed string */ 



 

 

     X509_free(cert);  /* free the malloc'ed certificate copy */ 

 } 

 else 

     printf("Info: No client certificates configured.\n"); 

} 

  

int main(int count, char *strings[]) 

{   SSL_CTX *ctx; 

 int server; 

 SSL *ssl; 

 char buf[1024]; 

 int bytes; 

 char *hostname, *portnum; 

  

 if ( count != 3 ) 

 { 

     printf("usage: %s <hostname> <portnum>\n", strings[0]); 

     exit(0); 

 } 

 SSL_library_init(); 

 hostname=strings[1]; 

 portnum=strings[2]; 

  

 ctx = InitCTX(); 

 server = OpenConnection(hostname, atoi(portnum)); 

 ssl = SSL_new(ctx);   /* create new SSL connection state */ 



 

 

 SSL_set_fd(ssl, server); /* attach the socket descriptor */ 

 if ( SSL_connect(ssl) == FAIL )   /* perform the connection */ 

     ERR_print_errors_fp(stderr); 

 else 

 {   char *msg = "Hello???"; 

  

        printf("Connected with %s encryption\n", SSL_get_cipher(ssl)); 

     ShowCerts(ssl);     /* get any certs */ 

     SSL_write(ssl, msg, strlen(msg));   /* encrypt & send message */ 

     bytes = SSL_read(ssl, buf, sizeof(buf)); /* get reply & decrypt */ 

     buf[bytes] = 0; 

     printf("Received: \"%s\"\n", buf); 

     SSL_free(ssl);     /* release connection state */ 

 } 

 close(server);      /* close socket */ 

 SSL_CTX_free(ctx);     /* release context */ 

 return 0; 

} 

 

9. Test Cases: 

Case 1: Single CLient Socket connected to Server SOcket. 

 

 



 

 

 
 

 
 

CASE 2: MULTIPLE CLIENTS connected: 



 

 

 
 

 
 

 

10.Practical Questions: 

1. What is Socket? 

2. Difference between client socket and server socket? 

3. Explain peer to peer sockets? 

11. Exercise Related Questions:  
1. Configure TCP socket in File transfer? 

2. COnfigure UDP socket in File transfer? 

 

 

 

 

 

 

 



 

 

PRACTICAL 9: Case Study: PGP(Pretty Good Privacy) 
1. Practical significance: Pretty Good Privacy or PGP is a popular program used to encrypt and 

decrypt email over the Internet, as well as authenticate messages with digital signatures and encrypted 

stored files. 

2. Relevant Program Outcomes: PO 1, PO 2, PO 3, PO 5, PO 9, PO 11  

3. Competency and practical skills :  

The practical is expected to make the student to understand the significance of certificates and how to use 

them for identification purpose. 

4. Prerequisites:  
1. Student should have knowledge on basic internet usage. 

2. Student should have knowledge on e-mail communication and encryption mechanisms. 

 

 5. Resources required: 

  

S. No  Name of the Resource Broad Specification(Approx.) 

1  Computer System  

1. Processor – 2GHz  

2. RAM – 4GB  

  3. Hard-Drive Space – 20GB  

  4. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 

2  Internet Connection. 

 

 

 

6. Precautions:  

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard, mouse and monitor are properly working.  

3. Ensure that there is uninterrupted internet connection is available. 

4. A safe work space is clean, organized, and properly lighted.  

5. Follow electrical safety guidelines to prevent electrical fires,  

    injuries, and fatalities in the home and the workplace. Power  

    supplies and CRT monitors contain high voltage.  

 

Pretty Good Privacy (PGP)  

 

Step 1 – Create a public/private key pair in PGP 

https://searchsecurity.techtarget.com/definition/encryption
https://searchsecurity.techtarget.com/definition/digital-signature


 

 

 
1. Using an ISFTS Student Laptop Computer, power on the computer. During start-up you will be 

presented with a window to choose an Operating System, select “Windows 2000”. The loading process 

for Windows 2000 may take several minutes. Once Windows 2000 has completely loaded a desktop login 

window interface will appear requesting a Username: 

“Administrator” and Password: “tartans”. 

 

2. Once log-on is complete, a Windows 2000 Desktop interface will appear. In order to begin utilizing 

PGP, you must first launch the program. You will need to click on the 

“Start” button once; then click once on the “Program Folder”; and click on the “PGP Folder”. At this point 

you should double click on the “PGP Key” Icon. 

 

3. At this point you should see the Key Generation Wizard. If you do not see this window but rather a 

“PGP Keys” window, you must click on the “Keys” drop-down menu and select “New Keys” to arrive at 

the Key Generation Wizard. Start the Key Generation Wizard by clicking the “Next” button. 

 

4. The Key Generation Wizard will now ask for you to select a “Key Pair Type”. You will need to 

select “Diffie-Hellman”. After selecting the correct “Key Pair Type” proceed to the next window. 

 

5. Now the Key Generation Wizard will ask you to select the “Key Pair Size”. The default setting is 

2048 bits. This default setting is fine. All that you need to do is click “Next” and proceed on to the “Key 

Expiration” window. 

 

6. At this point the Key Generation Wizard will require you to select a “Key Expiration”. The default 

setting should be “Key pair never expires”. Ensure this setting is correct and then proceed to the next 

window. 

 

 

7. Next the Key Generation Wizard requires you to enter a passphrase to protect your private key. 

Enter a passphrase that you can easily remember in both the “Passphrase” and “Confirmation” boxes. 

[The passphrase must be at least eight character in length] Once you have provided the passphrase click 

“Next”. PGP will now create your key pair. 

 

8. Once the key pair is created, the next Key Generation Wizard window will prompt you send your 

newly created key pair to a root server. Do NOT send the key to the root server. Make sure the box is 

unchecked then click next. 

 

9. This is the last window in the Key Generation Wizard. Click Finish to complete the Key Generation 

Wizard. 

 

 

 

Step 2 – Create revocation key 
 

A revocation key is used for revoking keys (typically stored on public Internet key servers) when a 

passphrase has been forgotten or the key pair has been lost. It is recommended that this revoking key (and 

any backup of your actual key pair) be stored on a floppy disk and kept in an alternate/safe location. 

 

1. To begin using PGP you must right click on the “Pad Lock” icon located in the lower right side of 

the task bar, and then select the “PGPkeys” option. This will launch a PGPkeys window. If the “Pad Lock” 

icon is not located in the lower right side of the task bar, you will need to click on the “Start” button on 

the lower left side of the task bar and select the “Programs” folder. 



 

 

 

Now locate the “PGP” folder and click once more.  

At this point you will see four choices:  

(1)PGPkeys; (2) PGPtools; (3) PGPtray; and (4) Documentation. Select the “PGPkeys” option.  

This will launch the PGPkeys window. 

 

2. At the “PGPKeys” window you should see the PGP Key Pair you just created in Step #1. You will 

need to click on your newly created PGPkey; this will highlight and select your newly created PGPkey. 

Once the PGPkey is highlighted, click on “Keys” option in the drop- down menu and choose the “Export” 

function. PGP is now going to ask for a 

location to export your PGPkey. In addition to providing a location (Remember this location, because you 

will need to revisit this later in the Step.) you must be sure to include your “private key(s)”. This is 

accomplished by checking the small box located in the lower right corner of the Export window. 

 

 

3. Once you have successfully exported you PGP Key Pair (Including your “private key(s)”) you must 

now revoke your PGP Key Pair. To do this you will reselect your PGP Key Pair by clicking on your Key 

Pair, then click on the “Keys” option in the drop-down menu and choose the “Revoke” function. PGP is 

now going prompt a warning (read the warning and click “yes” to continue) and ask for the passphrase 

you created in Step #1 while initial creating your PGP Pair Key. After inputting your PGP Passphrase 

click “Ok” to revoke your PGP Pair Key. You should now see your PGP Pair Key Icon with a red “x” in 

the PGPkeys window. 

 

4. Now you must repeat Step #1 only this time exporting your “Revoked” PGP Key Pair. Before 

exporting and saving the “Revoked PGP Key Pair” make sure to rename the Revoked PGP Key Pair so 

to distinguish it from the Un-Revoked PGP Key. 

 

5. The next step is to delete the revoked key pair from the PGPkeys window. At the PGPKeys window 

you should see the PGP Key Pair you just revoked. You will need to click on your revoked PGPkey; this 

will highlight and 

select the revoked PGPkey. Once the revoked PGPkey is highlighted, click on the “Edit” option in the 

drop-down menu and choose the “Delete” function and click “yes” to delete your revoked PGP Key Pair. 

 

6. Next you will need to import your original PGP Key Pair that was saved prior to revoking. From 

the PGPkeys window, click on the “Key” option in the drop- down menu and choose the “import” 

function. You will need to select the location where the 

original PGP Key Pair was saved; select that file, and click “open”. A second window will appear (Select 

key(s)) that will list the Key File you just selected. Highlight that file and right click selecting the “key 

properties” and ensure that the “Implicit Trust” is checked, then click the “import” button. At this point 

you should see the Imported Key in the PGP Keys window. 

You now have a current, un-revoked copy of your PGP Key Pair on your Key Ring and a revoked copy 

of the PGP Key in a safe place. 

 

 

Step 3 – Exchanging PGP Keys with other students 
This illustrates how pgp key rings can be populated with the public keys of other individuals with whom 

you wish to securely communicate. This Step will simulate sending and obtaining public keys to a server 

like MIT’s PGP Public Key Server. 

 

1. Open the PGPKeys window; select your PGP Key Pair from the list highlighting that Key Pair by 

right clicking. Next choose the “Keys” option from the drop-down menu and select the Export function.  

This is the location where you will save your Public PGP Key. Make sure when exporting your PGP Key 



 

 

you DO NOT include your private key. In the lower left hand side of the “Export Key to File” there is a 

box for including private 

keys. Make sure that this box is unchecked; IF NOT, YOUR “SECRET”PRIVATE KEY WILL BE SENT 

DEFEATING THE PURPOSE OF PGP. 

 

2. Next you are going to Import your partner’s PGP Public Key from the pgp-bin shared directory on 

the server. Open your PGP Keys and verify that the new public key you have imported is in place on the 

key ring. 

 

 

Step 4 – Signing the new key 
 

PGP requires that trust be established prior to using another person’s public key to communicate securely. 

This is accomplished by signing their public key with your private key. 

 

1. Right click on the newly imported public key (your partner’s) 

2. Select Sign 

3. Ensure that the ‘Allow signature to be exported . . . ‘ box is unchecked 

4. Have your partner read you the fingerprint for their public key from the display of their system. This 

should match exactly the fingerprint that is displayed in this window. 

5. Once the fingerprint has been verified, click OK 

6. Ensure your private key is selected in the drop down box 

7. Enter your passphrase and click OK 

8. Now the round icon to the right of the key on your key ring should be green 

9. Right click on the key again 

10. Select Key Properties



 

 

11. Slide the bar on the bottom from ‘Untrusted’ to ‘Trusted’ 

12. Click Close 

 

Step 5 – Encrypting a file using your partner’s public key 

 
PGP can be used to encrypt files so that only specified people can read them. This is accomplished by 

encrypting the file with the intended recipient’s public key. 

 

1. Create a text file using Notepad. Write a brief secret message (don’t tell your partner what it says) 

and then save the file as yourname.txt to the My Documents folder. Use your real name for this! 

2. Open Windows Explorer and browse to the file you just created 

3. Right-click on the file and move the mouse over PGP 

4. Click on Encrypt 

5. Select your partner’s public key from the list by double clicking on it 

6. Click OK 

7. In the same folder as the .txt file, there should be a file with a similar name which ends in 

.pgp (i.e. yourname.txt.pgp) 

8. Copy this file to the pgp-bin share 

 

 

Step 6 – Decrypting the file with your private key 

 
Your intended recipient uses his/her private key to decrypt the file. 

 

1. Open Windows Explorer and browse to the pgp-bin share 

2. Select the .pgp file that has your partner’s name as part of the filename 

3. Double-click on the file 

4. In the PGP window, enter your passphrase and click OK 

5. In Windows Explorer, double click on the unencrypted file (yourpartner’s name.txt) and read the 

secret message that your partner wrote 

 

Step 7 – Encrypting and Signing a file 
 

By signing the file with your private key, your intended recipient is assured that it actually came from you 

and that it has not been modified in transit. 

 

1. From the My Documents folder, open the yourname.txt file in Notepad 

2. Highlight all of the text 

3. Right click on it and select Copy 

4. Right click on the PGP Lock in the tray (near the clock) 

5. Select Clipboard 

6. Click on Encrypt & Sign 

7. Double click your partner’s public key and click OK 

8. Enter your passphrase and click OK 

9. Now the text on the clipboard is signed



 

 

10. Go back to Notepad and delete the old text 

11. Paste the encrypted/signed text into Notepad 

12. Save the file as yourname-signed.txt in the pgp-bin share 

 

 

Step 8 – Verifying the signature 

 
1. Open the yourpartner’s-signed.txt file from the pgp-bin in Notepad 

2. Highlight all of the text in the file 

3. Right Click and select Copy 

4. Right click on the PGP lock in the system tray 

5. Select Clipboard 

6. Click on Decrypt & Verify 

7. Notice the status of the signed message (should be ‘good’) 

 

Step 9 – Sending Secure Email with PGP 
1. Open Microsoft Outlook by clicking the icon located on the desktop 

2. Click on the Tools menu and select E-mail Accounts 

3. Click Add a new e-mail account and then click Next 

4. Under Server Type, click IMAP and then click Next 

5. In the Your Name box, type your computer’s hostname (i.e., isftsstudent1) 

6. In the E-mail address box, type your computer’s hostname and then @192.168.30.19 (i.e., 

isftsstudent1@192.168.30.19) 

7. In the User Name box, type your computer’s hostname (i.e., isftsstudent1) 

8. In the Password box, type tartans (for the purposes of this Step, check the Remember password 

box) 

9. In the Server Information boxes (Incoming & Outgoing) you will need to enter the following IP 

Address “192.168.30.19” in both fields. Once this has been completed click “Next” continue. 

10. After your email account is created in Outlook 

(may take a few moments to synchronize), Click the PGP Menu (in Outlook at top of screen) and select 

Options 

 

11. Under Email Options, check all of the boxes and then click OK 

 

12. Now click the Tools menu and select Options 

13. Click the Mail Format tab, Uncheck the Use Microsoft Word…boxes and then click OK 

14. Click File|New|Mail Message 

15. In the To: box, type your partner’s email address (i.e., isftsstudent2@192.168.30.19) 

16. Type anything as a subject and then type a short message to your partner in the body of the 

message, then click Send 

17. Type your passphrase and then click OK (Click the Send/Receive button several times until your 

message arrives) 

18. When you read the message from your partner, notice that your message is verified, decrypted, 

and displayed in the PGP Secure Viewer. 

 

Step 10 - Adding a Public Key and sending Secure Email 
 

1. In this Step you will need to encrypt an email to the Instructor using PGP. Therefore, the first 

step is to obtain the instructor’s Public PGP Key. The Instructor’s PGP Key 

(isftsinstructor@192.168.30.19) is located in the shared pgp-bin directory at 192.168.30.250. 



 

 

2. Before you can send a secure email you’ll need to import the Instructor’s Public Key to your Key 

Ring. To review the process make reference to Step #3. 

3. Go into Outlook and send a PGP Secure email message to isftsinstructor@192.168.30.19; the 

instructor will verify that a message is received from each student 

 

8. Test cases:  
1.  Try to use another private key instead of original one for decryption process.  

2.  Use digital signature verification with different public keys. 

 

9. Sample output  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



 

 

10. Practical Questions: 
1. What is PGP? 

2. How do PGP works? 

3. How PGP encryption works 

4. Discuss about the PGP keys. 

5. Differentiate PGP and S/MIME. 

 

11. Exercise Questions 

 
  1. Implement PGP software on windows platform. 

  2. Implement PGP software on Unix platform 
 

PRACTICAL 10: Case Study: Intrusion Detection Systems 

and Honey pots. 
 

Practical significance:  
An Intrusion Detection System (IDS) is a monitoring system that detects suspicious activities and 

generates alerts when they are detected. Based upon these alerts, a security operations center (SOC) 

analyst or incident responder can investigate the issue and take the appropriate actions to remediate 

the threat. 

Intrusion detection systems are designed to be deployed in different environments. And like many 

cybersecurity solutions, an IDS can either be host-based or network-based. 

  

● Host-Based IDS (HIDS): A host-based IDS is deployed on a particular endpoint and designed to 

protect it against internal and external threats. Such an IDS may have the ability to monitor network 

traffic to and from the machine, observe running processes, and inspect the system’s logs. A host-

based IDS’s visibility is limited to its host machine, decreasing the available context for decision-

making, but has deep visibility into the host computer’s internals. 

● Network-Based IDS (NIDS): A network-based IDS solution is designed to monitor an 

entire protected network. It has visibility into all traffic flowing through the network and makes 

determinations based upon packet metadata and contents. This wider viewpoint provides more 

context and the ability to detect widespread threats; however, these systems lack visibility into the 

internals of the endpoints that they protect. 

 

  

Due to the different levels of visibility, deploying a HIDS or NIDS in isolation provides incomplete 

protection to an organization’s system. A unified threat management solution, which integrates 

multiple technologies in one system, can provide more comprehensive security. 

Detection Method of IDS Deployment. 

 

 

Beyond their deployment location, IDS solutions also differ in how they identify potential intrusions: 

  

● Signature Detection: Signature-based IDS solutions use fingerprints of known threats to 

identify them. Once malware or other malicious content has been identified, a signature is generated 

and added to the list used by the IDS solution to test incoming content. This enables an IDS to 

achieve a high threat detection rate with no false positives because all alerts are generated based 

upon detection of known-malicious content. However, a signature-based IDS is limited to detecting 

known threats and is blind to zero-day vulnerabilities. 

https://www.jigsawacademy.com/blogs/cyber-security/what-is-pgp#What-is-PGP?
https://www.jigsawacademy.com/blogs/cyber-security/what-is-pgp#How-do-PGP-works?
https://www.jigsawacademy.com/blogs/cyber-security/what-is-pgp#How-PGP-encryption-works
https://www.jigsawacademy.com/blogs/cyber-security/what-is-pgp#How-PGP-decryption-works
https://www.jigsawacademy.com/blogs/cyber-security/what-is-pgp#PGP-Keys


 

 

● Anomaly Detection: Anomaly-based IDS solutions build a model of the “normal” behavior 

of the protected system. All future behavior is compared to this model, and any anomalies are 

labeled as potential threats and generate alerts. While this approach can detect novel or zero-day 

threats, the difficulty of building an accurate model of “normal” behavior means that these systems 

must balance false positives (incorrect alerts) with false negatives (missed detections). 

● Hybrid Detection: A hybrid IDS uses both signature-based and anomaly-based detection. 

This enables it to detect more potential attacks with a lower error rate than using either system in 

isolation. 

 

IDS vs Firewalls 

 

Intrusion Detection Systems and firewalls are both cybersecurity solutions that can be deployed to 

protect an endpoint or network. However, they differ significantly in their purposes. 

  

An IDS is a passive monitoring device that detects potential threats and generates alerts, enabling 

security operations center (SOC) analysts or incident responders to investigate and respond to the 

potential incident. An IDS provides no actual protection to the endpoint or network. A firewall, on the 

other hand, is designed to act as a protective system. It performs analysis of the metadata of network 

packets and allows or blocks traffic based upon predefined rules. This creates a boundary over which 

certain types of traffic or protocols cannot pass. 

  

Since a firewall is an active protective device, it is more like an Intrusion Prevention System 

(IPS) than an IDS. An IPS is like an IDS but actively blocks identified threats instead of simply raising 

an alert. This complements the functionality of a firewall, and many next-generation firewalls 

(NGFWs) have integrated IDS/IPS functionality. This enables them to both enforce the predefined 

filtering rules (firewalls) and detect and respond to more sophisticated cyber threats (IDS/IPS). Learn 

more about the IPS vs IDS debate here. 

 

HONEYPOTS: 

 

What is a honeypot?---Honeypots lie under the category of NIDS. A honeypot is a security resource 

whose value lies in being probed, attacked, or compromised. A honeypot is a network-attached system 

set up as a decoy to lure cyber attackers and detect, deflect and study hacking attempts to gain 

unauthorized access to information systems. The function of a honeypot is to represent itself on the 

internet as a potential target for attackers -- usually, a server or other high-value asset -- and to gather 

information and notify defenders of any attempts to access the honeypot by unauthorized users. 

Honeypot systems often use hardened operating systems (OSes) where extra security measures have 

been taken to minimize their exposure to threats. They are usually configured so they appear to offer 

attackers exploitable vulnerabilities.  

 

 

How do honeypots work? 

Generally, a honeypot operation consists of a computer, applications and data that simulate the 

behavior of a real system that would be attractive to attackers, such as a financial system, internet of 

things (IoT) devices, or a public utility or transportation network. It appears as part of a network but is 

actually isolated and closely monitored. Because there is no reason for legitimate users to access a 

honeypot, any attempts to communicate with it are considered hostile. 

Honeypots are often placed in a demilitarized zone (DMZ) on the network. That approach keeps it 

isolated from the main production network, while still being a part of it. In the DMZ, a honeypot can 

be monitored from a distance while attackers access it, minimizing the risk of the main network being 

breached. 

Honeypots can be classified based on their deployment (use/action) and based on their level of 



 

 

involvement. Based on deployment, honeypots may be classified as:  

● production honeypots 

● research honeypots 

Production honeypots are easy to use, capture only limited information, and are used primarily by 

corporations. Production honeypots are placed inside the production network with other production 

servers by an organization to improve their overall state of security. Normally, production honeypots 

are low-interaction honeypots, which are easier to deploy. They give less information about the attacks 

or attackers than research honeypots. 

 

 

 

Research honeypots are run to gather information about the motives and tactics of the black 

hat community targeting different networks. These honeypots do not add direct value to a specific 

organization; instead, they are used to research the threats that organizations face and to learn how to 

better protect against those threats. Research honeypots are complex to deploy and maintain, capture 

extensive information, and are used primarily by research, military, or government organizations. 

Based on design criteria, honeypots can be classified as:  

● pure honeypots 

● high-interaction honeypots 

● low-interaction honeypots 

Pure honeypots are full-fledged production systems. The activities of the attacker are monitored by 

using a bug tap that has been installed on the honeypot's link to the network. No other software needs 

to be installed. Even though a pure honeypot is useful, stealthiness of the defense mechanisms can be 

ensured by a more controlled mechanism. 

High-interaction honeypots imitate the activities of the production systems that host a variety of 

services and, therefore, an attacker may be allowed a lot of services to waste their time. By 

employing virtual machines, multiple honeypots can be hosted on a single physical machine. 

Therefore, even if the honeypot is compromised, it can be restored more quickly. In general, high-

interaction honeypots provide more security by being difficult to detect, but they are expensive to 

maintain. If virtual machines are not available, one physical computer must be maintained for each 

honeypot, which can be exorbitantly expensive. Example: Honeynet. 

Low-interaction honeypots simulate only the services frequently requested by attackers. Since they 

consume relatively few resources, multiple virtual machines can easily be hosted on one physical 

system, the virtual systems have a short response time, and less code is required, reducing the 

complexity of the virtual system's security. Example: Honeyd. 

2. Relevant Program Outcomes:  

PO 2, PO 4, PO 9  

3. Competency and practical skills :  

The practical is expected to develop the following skills  
1. Ability to study and understand IDS and Honeypots.  

 

 

 



 

 

4. Pre-requisites:  

1. Student should have knowledge on Computer Networks 

2. Student should have knowledge on C Programming. 

 

 5. Resources required: 

  

S

.No

  

Name of the Resource Broad Specification(Approx.) 

1

  

Computer System  

1. Processor – 2GHz  

2. RAM – 4GB   

  3. VGA with 1024×768 screen resolution  

(exact hardware requirement will depend upon the  

distribution that we choose to work with) 

2

  

Internet 

 

6. Precautions:  

1. Check whether the computer is getting proper power or not.  

2. Ensure the keyboard, mouse and monitor are properly working.  

3. Ensure that there are no power fluctuations while executing the program.  

4. Safe working conditions help prevent injury to people and damage to computer equipment.  

5. A safe work space is clean, organized, and properly lighted. Everyone must understand and follow 

safety procedures.  

6. Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home 

and the workplace. Power supplies and CRT monitors contain high voltage.  

 

 

7. Practical/Case Study Related questions: 

1. What are the types of IDS?  

2. What are the differences between IDS and Firewalls? 

3. What type of IDS is Honeypots?  

4. What are various methods of detecting Intrusion in HIDS? 

5. What are the types of Honeypots? 

6. How do Honeypots work? 


