

# DEPARTMENT OF COMPUTER SCIENCES&ENGINEERING

# **VISION:**

Our vision is to emerge as a world class Computer Science and Engineering department through excellent teaching and strong research environment that responds swiftly to the challenges of changing computer science technology and addresses technological needs of the stakeholders.

### **MISSION:**

To enable our students to master the fundamental principles of computing and to develop in them the skills needed to solve practical problems using contemporary computer-based technologies and practices to cultivate a community of professionals who will serve the public as resources on state-of- the-art computing science and information technology.

## **Course outcomes:**

| After | completion of this course, a student will be able to:                       |
|-------|-----------------------------------------------------------------------------|
| 1.    | Develop C programs using operators                                          |
| 2.    | Write C programs using conditional structures                               |
| 3     | Write C programs using iterative structure arrays and strings               |
| 4.    | Inscribe C programs that use Pointers to and functions                      |
| 5.    | Develop a c program for implementing user defined types and file processing |

# **PROGRAM OUTCOMES (POs):**

| Graduate<br>Attribute1: | Engineering Knowledge                                                                                                                                                                                                       |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PO-A                    | An ability to apply the knowledge of<br>basic engineering sciences,<br>humanities, core engineering and<br>computing concept in modeling and<br>designing computer based systems.                                           |  |  |
| Graduate<br>Attribute2: | Problem Analysis                                                                                                                                                                                                            |  |  |
| РО-В                    | An ability to identify, analyze the<br>problems in different domains and<br>define the requirements appropriate<br>to the solution.                                                                                         |  |  |
| Graduate<br>Attribute3: | Design/Development of Solution                                                                                                                                                                                              |  |  |
| PO-C                    | An ability to design, implement & test<br>a computer based system, component<br>or process that meet functional<br>constraints such as public health and<br>safety, cultural, societal and<br>environmental considerations. |  |  |
| Graduate<br>Attribute4: | Conduct Investigations of Complex<br>Problems                                                                                                                                                                               |  |  |
| PO-D                    | An ability to apply computing<br>knowledge to conduct experiments and<br>solve complex problems, to analyze<br>and interpret the results obtained<br>within specified timeframe and<br>financial constraints consistently.  |  |  |
| Graduate<br>Attribute5: | Modern Tool Usage                                                                                                                                                                                                           |  |  |
| PO-E                    | An ability to apply or create modern<br>techniques and tools to solve<br>engineering problems that<br>demonstrate cognition of limitations<br>involved in design choices.                                                   |  |  |
| Graduate<br>Attribute6: | The Engineer and Society                                                                                                                                                                                                    |  |  |
| PO-F                    | An ability to apply contextual reason<br>and assess the local and global impact<br>of professional engineering practices<br>on individuals, organizations and<br>society.                                                   |  |  |
| Graduate<br>Attribute7: | Environment and Sustainability                                                                                                                                                                                              |  |  |
| PO-G                    | An ability to assess the impact of engineering practices on societal and environmental sustainability.                                                                                                                      |  |  |
| Graduate<br>Attribute8: | Ethics                                                                                                                                                                                                                      |  |  |
| РО-Н                    | Ability to apply professional ethical<br>practices and transform into good<br>responsible citizens with social<br>concern.                                                                                                  |  |  |

| Graduate<br>Attribute9:  | Individual and Team Work                                                                                                                                                                            |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PO-I                     | Acquire capacity to understand and<br>solve problems pertaining to various<br>fields of engineering and be able to<br>function effectively as an individual<br>and as a member or leader in a team. |  |  |
| Graduate<br>Attribute10: | Communication                                                                                                                                                                                       |  |  |
| PO-J                     | An ability to communicate effectively<br>with range of audiences in both oral<br>and written forms through technical<br>papers, seminars, presentations,<br>assignments, project reports etc.       |  |  |
| Graduate<br>Attribute11: | Project Management and Finance                                                                                                                                                                      |  |  |
| РО-К                     | An ability to apply the knowledge of<br>engineering, management and<br>financial principles to develop and<br>critically assess projects and their<br>outcomes in multidisciplinary areas.          |  |  |
| Graduate<br>Attribute12: | Life-long Learning                                                                                                                                                                                  |  |  |
| PO-L                     | An ability to recognize the need and<br>prepare oneself for lifelong self<br>learning to be abreast with rapidly<br>changing technology.                                                            |  |  |

# **PROGRAM SPECIFIC OUTCOMES (PSOs):**

1.Programming and software Development skills: Ability to acquire programming efficiency to analyze, design and develop optimal solutions, apply standard practices in software project development to deliver quality software product.

2.Computer Science Specific Skills: Ability to formulate, simulate and use knowledge in various domains like data engineering, image processing and information and network security, artificial intelligence etc., and provide solutions to new ideas and innovations.

# ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

# A Laboratory Manual For PROBLEM SOLVING WITH C (CSE-117) SEMESTER-1



Prepared by Mrs.S.A.BHAVANI Assistant Professor Dept of CSE

### **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING**

| SI.No | List of Experiments                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                   |                                          | СО |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------|------------------------------------------|----|
|       | <b>1. CONVERTING MILES TO KILOMETERS</b>                                                                                                                                                                                                                                                                                                                                                             |                                        |                                   |                                          | 1  |
| 1     | <b>PROBLEM STATEMENT:</b> Your summer surveying job<br>requires you to study some maps that give distances in<br>kilometers and some that use miles. You and your<br>coworkers prefer to deal in metric measurements. Write<br>a program that performs the necessary conversion.                                                                                                                     |                                        |                                   |                                          |    |
|       | Problem Input: miles<br>Problem Output: kms<br>Relevant Formula: 1                                                                                                                                                                                                                                                                                                                                   | s /* the<br>/* the<br><i>mile = 1.</i> | distance<br>distance<br>609 kilom | in miles*/<br>in kilometers */<br>neters |    |
|       | Design algorithm , flow<br>data requirements for t<br>Try the sample test cas                                                                                                                                                                                                                                                                                                                        | chart ,pr<br>the given<br>es given     | rogram us<br>problem<br>below :   | sing the above                           |    |
|       | SAMPLE TEST                                                                                                                                                                                                                                                                                                                                                                                          | INPU                                   | OUPU                              |                                          |    |
|       | CASES<br>Test case 1                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>10                                | <b>I</b><br>16.09                 |                                          |    |
|       | Test case 2                                                                                                                                                                                                                                                                                                                                                                                          | 2                                      | 3.218                             |                                          |    |
| 2     | SUPERMARKET COIN                                                                                                                                                                                                                                                                                                                                                                                     | PROCES                                 | SOR                               |                                          | 1  |
|       | <b>PROBLEM STATEMENT</b> : You are drafting software for<br>the machines placed at the front of supermarkets to<br>convert change to personalized credit slips. In this draft,<br>the user will manually enter the number of each kind of<br>coin in the collection, but in the final version, these<br>counts will be provided by code that interfaces with the<br>counting devices in the machine. |                                        |                                   |                                          |    |
|       | Problem Inputs<br>char first, middle, last /* a customer's initials */<br>int dollars /* number of dollars */<br>int quarters /* number of quarters */<br>int dimes /* number of dimes */<br>int nickels /* number of nickels */<br>int pennies /* number of pennies */                                                                                                                              |                                        |                                   |                                          |    |
|       | Problem Outputs         int total_dollars       /* total dollar value       */         int change       /* leftover change       */         Additional Program Variables       int total_cents       /* total value in cents       */         Design algorithm, flow chart ,program using the above       int total_cents       int total_cents       int chart ,program using the above             |                                        |                                   |                                          |    |
|       | test cases given below                                                                                                                                                                                                                                                                                                                                                                               | :                                      | -                                 | - 1                                      |    |

|   | TESTING TIP :                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |     |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | To test this program<br>of coins that yield an<br>leftover change. For<br>dimes, 35 nickels, an<br>5 dollars and 0 cents<br>quantity of pennies b<br>sure that these cases                     |                                                                                                                                                                                                                                                                                                   |     |
|   | SAMPLE TEST INPUT<br>CASES                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |     |
|   | Test case 1                                                                                                                                                                                    | Type in your 3 initials and press re<br>JRH, please enter your coin inform<br>Number of \$ coins > 2<br>Number of quarters> 14<br>Number of dimes > 12<br>Number of nickels > 25<br>Number of pennies > 131                                                                                       |     |
|   | Test case 2                                                                                                                                                                                    | Type in your 3 initials and press re<br>JRH, please enter your coin inform<br>Number of \$ coins > 3<br>Number of quarters> 12<br>Number of dimes > 14<br>Number of nickels > 50<br>Number of pennies > 175                                                                                       |     |
| 3 | WATER BILL PROB                                                                                                                                                                                | LEM                                                                                                                                                                                                                                                                                               | 1,2 |
|   | <b>PROBLEM STATEM</b><br>computes a custome<br>water demand charg<br>of \$1.10 for every the<br>is figured from mete<br>taken recently and a<br>the customer's unpa<br>late charge is assessed | <b>ENT :</b> Write a program that<br>r's water bill. The bill includes a \$35<br>ge plus a consumption (use) charge<br>ousand gallons used. Consumption<br>r readings (in thousands of gallons)<br>t the end of the previous quarter. If<br>id balance is greater than zero, a \$2<br>ed as well. |     |
|   | <b>Problem Constants</b><br>DEMAND_CHG 35.00 /* basic water demand charge<br>*/<br>PER_1000_CHG 1.10 /* charge per thousand gallons                                                            |                                                                                                                                                                                                                                                                                                   |     |
|   | used */<br>LATE_CHG 2.00 /<br>*/<br>Problem Inputs                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |     |
|   | int previous /* met<br>thousands of gallons<br>int current /* mete<br>double unpaid /* un                                                                                                      |                                                                                                                                                                                                                                                                                                   |     |
|   | double unpaid /* unpaid balance of previous bill */<br><b>Problem Outputs</b><br>double bill /* water bill */<br>double use charge /* charge for actual water use */                           |                                                                                                                                                                                                                                                                                                   |     |

|                                                                                                                                                   | double late_charge ,     |                                                               |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------|-------------|
|                                                                                                                                                   | previous balance *       |                                                               |             |
|                                                                                                                                                   | Relevant Formula         |                                                               |             |
|                                                                                                                                                   | water hill – demar       |                                                               |             |
|                                                                                                                                                   | halanca applicable       |                                                               |             |
|                                                                                                                                                   | Dalalice+ applicable     |                                                               |             |
|                                                                                                                                                   |                          |                                                               |             |
|                                                                                                                                                   | Design algorithm , fl    | ow chart ,program using the above                             |             |
|                                                                                                                                                   | data requirements f      |                                                               |             |
|                                                                                                                                                   | test cases given below : |                                                               |             |
|                                                                                                                                                   | SAMPLE TEST              | INPUT                                                         |             |
|                                                                                                                                                   | CASES                    |                                                               |             |
|                                                                                                                                                   | Test case 1              | This program figures a water bill b                           |             |
|                                                                                                                                                   |                          | on the demand charge                                          |             |
|                                                                                                                                                   |                          | (\$35,00) and a \$1,10 per 1000 gall                          |             |
|                                                                                                                                                   |                          | (\$55.00) and a \$1.10 per 1000 gan                           |             |
|                                                                                                                                                   |                          | $4^{\pm}2.00$ surpharms is added to access                    |             |
|                                                                                                                                                   |                          | A \$2.00 surcharge is added to accor                          |             |
|                                                                                                                                                   |                          | with an unpaid balance.                                       |             |
|                                                                                                                                                   |                          | Enter unpaid balance, previous an                             |             |
|                                                                                                                                                   |                          | current meter readings on separat                             |             |
|                                                                                                                                                   |                          | lines after the prompts. Press <retu< th=""><th></th></retu<> |             |
|                                                                                                                                                   |                          | or <enter> after typing each number</enter>                   |             |
|                                                                                                                                                   |                          | Enter unpaid balance> \$71.50                                 |             |
|                                                                                                                                                   |                          | Enter previous meter reading> 41                              |             |
|                                                                                                                                                   |                          |                                                               |             |
|                                                                                                                                                   | Test case 2              |                                                               |             |
|                                                                                                                                                   | on the demand charge     |                                                               |             |
|                                                                                                                                                   |                          | (\$25.00) and a \$1.10 per 1000 gall                          |             |
|                                                                                                                                                   |                          | (\$55.00) and a \$1.10 per 1000 gan                           |             |
|                                                                                                                                                   |                          | use charge. $A \neq 2$ 0.0 s we have a standard data see      |             |
|                                                                                                                                                   |                          | A \$2.00 surcharge is added to acco                           |             |
|                                                                                                                                                   |                          | with an unpaid balance.                                       |             |
|                                                                                                                                                   |                          | Enter unpaid balance, previous and                            |             |
|                                                                                                                                                   |                          | current meter readings on separat                             |             |
|                                                                                                                                                   |                          | lines after the prompts. Press <retu< th=""><th></th></retu<> |             |
|                                                                                                                                                   |                          | or <enter> after typing each number</enter>                   |             |
|                                                                                                                                                   |                          | Enter unpaid balance> \$51                                    |             |
|                                                                                                                                                   |                          | Enter previous meter reading> 41                              |             |
|                                                                                                                                                   |                          | Enter current meter reading> 413                              |             |
|                                                                                                                                                   |                          |                                                               |             |
|                                                                                                                                                   |                          |                                                               |             |
| 4                                                                                                                                                 | PRIME NIIMRER            |                                                               | 1.2         |
|                                                                                                                                                   | PROBLEM STATEM           | <b>FNT</b> Given a positive integer N                         | -, <b>-</b> |
|                                                                                                                                                   | calculate the sum of a   | l nrime numbers between <b>1</b> and <b>N</b>                 |             |
|                                                                                                                                                   | (inclusive)              | i prince numbers between I and N                              |             |
|                                                                                                                                                   | Innut.                   |                                                               |             |
|                                                                                                                                                   | The first line of input  | contains an integer <b>T</b> denoting the                     |             |
|                                                                                                                                                   | number of test cases '   | T testcases follow. Fach test case                            |             |
|                                                                                                                                                   | contains one line of in  | nut containing N                                              |             |
|                                                                                                                                                   |                          |                                                               |             |
|                                                                                                                                                   | For each test case in a  | new line, print the sum of all prime                          |             |
|                                                                                                                                                   | numbers hetween 1 a      | nd N.                                                         |             |
|                                                                                                                                                   | Constraints              |                                                               |             |
|                                                                                                                                                   | 1 < T < 100              |                                                               |             |
|                                                                                                                                                   | $1 \le N \le 10^{6}$     |                                                               |             |
| Output:For each test case, in a new line, print the sum of all prime<br>numbers between 1 and N.Constraints: $1 \le T \le 100$ $1 \le N \le 10^6$ |                          |                                                               |             |

|   | Design algorithm , flow chart<br>data requirements for the giv<br>test cases given below :<br>SAMPLE TEST CASES<br>Test case 1<br>Test case 2                                                                                                                                                                                                                                                                                                                                                                                        | r,program using the above<br>ven problem Try the sample<br>INPUT 2 5 10 2 7 10 10                                                                                                                                                                                                                |   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 5 | BUBBLE SORT         PROBLEM STATEMENT : The         function which is used to imple         Input:         First line of the input denotes the         First line of the test case is the sconsists of array elements.         Output:         Sorted array in increasing orde         Constraints:         1 <=T<= 100         1 <=N<= 1000         1 <=arr[i]<= 1000         Design algorithm , flow charted         data requirements for the give         test cases given below :         SAMPLE TEST CASES         Test case 1 | e task is to complete bubble<br>ment Bubble Sort<br>he number of test cases 'T'.<br>size of array and second line<br>r is displayed to the user.<br>c,program using the above<br>ven problem Try the sample<br>INPUT<br>2<br>5<br>4 1 3 9 7<br>10<br>10 9 8 7 6 5 4 3 2 1<br>1<br>5<br>8 9 3 2 0 | 3 |
| 6 | TEXT EDITORPROBLEM STATEMENT: Deprogram to perform editing of<br>your editor should be able to<br>substring, delete a substring,<br>specified location. The editor<br>strings of less than 80 charactProblem Constant<br>size of a string */<br>Problem Inputs<br>char source[MAX_LEN] /*<br>char command<br>/* edit<br>Problem Output                                                                                                                                                                                               | esign and implement a<br>operations on a line of text.<br>locate a specified target<br>and insert a substring at a<br>should expect source<br>eters.<br>EN 100 /* maximum<br>source string */                                                                                                    | 3 |

|   | test cases given belo                                  |                                                                                                                                                |       |
|---|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|   | SAMPLE TEST<br>CASES                                   | INPUT                                                                                                                                          |       |
|   | Test case 1                                            | Enter the source string:<br>> Internet use is growing rapid<br>Enter D(Delete), I(Insert), F(Fin<br>or Q(Quit)> d<br>String to delete> growing |       |
|   | Test case 2                                            | Enter D(Delete), I(Insert), F(Fin<br>or Q(Quit)> F<br>String to find>.                                                                         |       |
| 7 | ARITHMETIC WIT                                         | TH COMMON FRACTIONS                                                                                                                            | 1,2,3 |
|   | PROBLEM STATEM                                         | <b>IENT:</b> You are working problems in                                                                                                       |       |
|   | which you must dis                                     | play your results as integer ratios;                                                                                                           |       |
|   | therefore, you need                                    | to be able to perform computations                                                                                                             |       |
|   | with common fracti                                     | ons and get results that are common                                                                                                            |       |
|   | fractions in reduced                                   | l form. You want to write a program                                                                                                            |       |
|   | that will allow you t                                  | o add, subtract, multiply, and divide                                                                                                          |       |
|   | several pairs of com                                   | imon fractions.                                                                                                                                |       |
|   | _                                                      |                                                                                                                                                |       |
|   | Design algorithm, fl                                   | ow chart, program using the above                                                                                                              |       |
|   | data requirements f                                    | for the given problem                                                                                                                          |       |
|   | Try the sample test                                    | cases given below :                                                                                                                            |       |
|   |                                                        |                                                                                                                                                |       |
|   | SAMPLE TEST CA                                         | SES INPUT 1                                                                                                                                    |       |
|   | Test case 1                                            | Enter a common fraction as two                                                                                                                 |       |
|   |                                                        | integers separated by a slash> 3/                                                                                                              |       |
|   | Test see 2                                             | Entor a common fraction of two                                                                                                                 |       |
|   | Test case 2                                            | integers senarated by a slash $> 3/4$                                                                                                          |       |
|   |                                                        | Enter an arithmetic operator (+ - *                                                                                                            |       |
|   |                                                        | /)                                                                                                                                             |       |
|   |                                                        | >+                                                                                                                                             |       |
|   |                                                        | Enter a common fraction as two                                                                                                                 |       |
|   | integers separated by a slash> 5/8                     |                                                                                                                                                |       |
|   |                                                        | Entering find_gcd with $n1 = 44$ , $n2$                                                                                                        |       |
| 0 |                                                        | Do another problem? (y/n)>n                                                                                                                    |       |
| 8 | FACTURIAL OF A N                                       |                                                                                                                                                | 4     |
|   | PROBLEM STATEN                                         | <b>WENT</b> : Find factorial of a given                                                                                                        |       |
|   | number n.                                              | low short program weing the short                                                                                                              |       |
|   | deta requirements for the given problem Try the sample |                                                                                                                                                |       |
|   | data requirements for the given problem Try the sample |                                                                                                                                                |       |
|   | test cases given below :                               |                                                                                                                                                |       |
|   | SAMPLE TEST INPUT 1                                    |                                                                                                                                                |       |
|   | CASES                                                  |                                                                                                                                                |       |
|   | Test case 1                                            | Enter a number to find factorial                                                                                                               |       |
|   | Test case 2                                            | Enter a number to find factorial                                                                                                               |       |

| 9 | COLLECTING AREA FOR SOLAR-HEATED HOUSE -                        | 4 |
|---|-----------------------------------------------------------------|---|
| 5 | FILES AND FUNCTIONS                                             | + |
|   | DDODIEM STATEMENT An architect needs a program                  |   |
|   | that can ostimate the appropriate size for the collecting       |   |
|   | area of a solar-heated house. Determining collecting            |   |
|   | area size requires consideration of several factors             |   |
|   | including the average number of heating degree days for         |   |
|   | the coldest month of a year (the product of the average         |   |
|   | difference between inside and outside temperatures and          |   |
|   | the number of days in the month) the heating                    |   |
|   | requirement per square foot of floor space the floor            |   |
|   | space and the efficiency of the collection method. The          |   |
|   | program will have access to two data files. File hdd tyt        |   |
|   | contains numbers representing the average heating               |   |
|   | degree days in the construction location for each of 12         |   |
|   | months. File solar txt contains the average solar               |   |
|   | insolation (rate in BTU/day at which solar radiation falls      |   |
|   | on one square foot of a given location) for each month.         |   |
|   | The first entry in each file represents data for January.       |   |
|   | the second, data for February, and so on.                       |   |
|   |                                                                 |   |
|   | Problem Inputs                                                  |   |
|   | Average heating degree days file                                |   |
|   | Average solar insolation file                                   |   |
|   | heat_deg_days /* average heating degree days for                |   |
|   | coldest month */                                                |   |
|   | coldest_mon /* coldest month (number 1 12)                      |   |
|   | ^/                                                              |   |
|   | for coldest month */                                            |   |
|   | heating reg. /* PTU /degree day ft/2 for planned type           |   |
|   | construction*/                                                  |   |
|   | efficiency /* % of solar insolation converted to usable         |   |
|   | heat */                                                         |   |
|   | floor space /* square feet */                                   |   |
|   | Program Variables                                               |   |
|   | energy_resrc /* usable solar energy available in coldest        |   |
|   | month (BTUs obtained from 1 ft <sup>2</sup> of collecting area) |   |
|   | */                                                              |   |
|   | Problem Outputs                                                 |   |
|   | heat_loss /* BTUs of heat lost by structure in coldest          |   |
|   | month */                                                        |   |
|   | collect_area /* approximate size (ft^2) of collecting           |   |
|   | area needed*/                                                   |   |
|   | The formula for approximating the desired collecting            |   |
|   | area (A) is :                                                   |   |
|   | A= heat loss / energy resource                                  |   |
|   | Design algorithm , flow chart ,program using the above          |   |
|   | data requirements for the given problem                         |   |
|   | Try the sample test cases given below :                         |   |

|    | SAMPLE TEST                                                                          | INPUT                                                                                                                                                                                                                                           | OUPUT                                                                                                                                                                                                                               |
|----|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Test case 1                                                                          | What is the approximate heating<br>requirement (BTU / degree day<br>ft^2) of this type of construction?<br>=>9<br>What percent of solar insolation<br>will be converted to usable heat?<br>=> 60<br>What is the floor space (ft^2)?<br>=> 1200  | To replace heat loss of 11350800 E<br>in the coldest month (month 12) w<br>available solar insolation of 500 B7<br>ft <sup>2</sup> / day, and an<br>efficiency of 60 percent, use a so<br>collecting area of 1221 ft <sup>2</sup> . |
|    | Test case 2                                                                          | What is the approximate heating<br>requirement (BTU / degree day<br>ft^2) of this type of construction?<br>=>10<br>What percent of solar insolation<br>will be converted to usable heat?<br>=> 60<br>What is the floor space (ft^2)?<br>=> 1200 | To replace heat loss of 12612000 E<br>in the coldest month (month 12) w<br>available solar insolation of 500 B?<br>ft^2 / day, and an<br>efficiency of 60 percent, use a so<br>collecting area of 1221 ft^2.                        |
|    |                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |
| 10 | UNIVERSAL MEASU                                                                      | REMENT CONVERSION                                                                                                                                                                                                                               | 4,5                                                                                                                                                                                                                                 |
|    | PROBLEM STATEM                                                                       | <b>ENT:</b> Design a program that takes                                                                                                                                                                                                         | sa                                                                                                                                                                                                                                  |
|    | measurement in one                                                                   | unit (e.g., 4.5 quarts) and conver                                                                                                                                                                                                              | ts                                                                                                                                                                                                                                  |
|    | It to another unit (e.g                                                              | 450 km miles, would result in th                                                                                                                                                                                                                | ic                                                                                                                                                                                                                                  |
|    | program output Att<br>km to miles 450.0<br>program should proc<br>conversion between | empting conversion of 450.0000<br>000km = 279.6247 miles . The<br>duce an error message if a<br>two units of different classes (e.g                                                                                                             | ,, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                              |
|    | liquid volume to dist                                                                | ance) is requested. The program                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |
|    | should take a databa                                                                 | se of conversion information fror                                                                                                                                                                                                               | n                                                                                                                                                                                                                                   |
|    | an input file before a                                                               | ccepting conversion problems                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |
|    | entered interactively                                                                | y by the user. The user should be                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |
|    | able to specify units                                                                | either by name (e.g., kilograms) o                                                                                                                                                                                                              | or                                                                                                                                                                                                                                  |
|    | by abbreviation (e.g.,                                                               | , kg).                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |
|    | Structured Data Ty                                                                   | ре                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
|    | unit_t members :                                                                     | tor string such as "milligrams"                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |
|    |                                                                                      | ter string such as mingranis                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |
|    | abbrev /* shorte<br>*/                                                               | er character string such as "mg"                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |
|    | class /* characte<br>"distance", or "mass"                                           | er string "liquid_volume",<br>'   */                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |
|    | standard /* numb                                                                     | per of standard units that are                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |
|    | equivalent to this un                                                                | it */                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |
|    | Problem Constants                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |
|    | NAME_LEN 30 /                                                                        | * storage allocated for a unit nam                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                  |
|    | ,<br>ABBREV_LEN 15                                                                   | /* storage allocated for a unit                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |
|    | abbreviation */                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |
|    | CLASS_LEN 20 /                                                                       | * storage allocated for a                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     |
|    | measurement class                                                                    | */                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |

| MAX IINITS 20 /*        | maximum number of different      |  |  |
|-------------------------|----------------------------------|--|--|
| units handled */        |                                  |  |  |
| Drohlam Innuts          | Problem Innuts                   |  |  |
| unit t units[MAY_UNI'   | [S] /* array concounting unit    |  |  |
| unit_t units[MAA_UNI    | base */                          |  |  |
| double questity         | ablase /                         |  |  |
| double quality /        | Value to convert /               |  |  |
| char old_units[NAME_    | LENJ /* name or abbreviation of  |  |  |
| units to be converted   |                                  |  |  |
| char new_units[NAME     | _LEN] /* name or abbreviation of |  |  |
| units to convert to *   | /                                |  |  |
| Problem Output          |                                  |  |  |
| Message giving conver   | sion.                            |  |  |
| Data file units.txt:    |                                  |  |  |
| miles mi d              | istance 1609.3                   |  |  |
| kilometers km           | distance 1000                    |  |  |
| yards yd d              | istance 0.9144                   |  |  |
| meters m                | distance 1                       |  |  |
| quarts qt li            | quid_volume 0.94635              |  |  |
| liters l liau           | uid volume 1                     |  |  |
| gallons gal l           | iquid volume 3.7854              |  |  |
| milliliters ml          | liquid volume 0.001              |  |  |
| kilograms kg            | mass 1                           |  |  |
| σrams σ m               | nass 0.001                       |  |  |
| churs churs i           | nass 0.001                       |  |  |
| nounds lb               | $n_{35} = 0.13591$               |  |  |
| Design algorithm flow   | chart program using the above    |  |  |
| data requirements for   | the given problem                |  |  |
| Try the completest cos  | une given beleuv.                |  |  |
| Try the sample test cas | les given below .                |  |  |
| SAMPLE TEST CASES       | S INPUT 1                        |  |  |
| Test case 1             | Enter a conversion problem or g  |  |  |
|                         | to guit.                         |  |  |
|                         | To convert 25 kilometers to      |  |  |
|                         | miles, you would enter           |  |  |
|                         | > 25 kilometers miles            |  |  |
|                         | or, alternatively,               |  |  |
|                         | > 25 km mi                       |  |  |
| Test case 2             | Enter a conversion problem or q  |  |  |
|                         | to quit.                         |  |  |
|                         | > 2.5 qt l                       |  |  |
|                         | Attempting conversion of         |  |  |
|                         | 2.5000 qt to l                   |  |  |
|                         | 2.5000qt = 2.36591               |  |  |
|                         | Enter a conversion problem or q  |  |  |
|                         | to quit.                         |  |  |
|                         |                                  |  |  |
|                         |                                  |  |  |

# LIST OF INDUSTRY RELEVANT SKILLS:

- Proficiency with programming languages. ...
- Learning concepts and applying them to other problems. ...

- Mathematical skills. ...
- Problem-solving capability. ...
- Communication skills. ... •
- Writing skills. ... •
- Inquisitiveness. ...
- Self-motivation.

### **GUIDELINES TO TEACHERS:**

- Faculty must verify the observations and records before assign the system.
- Faculty must verify Students Id cards before enter into Lab
- Faculty must take the attendance starting and ending of the lab time period.

This lab course consists of two set of programs

- 1) Minimum set of sample programs
- 2) Additional set of programs

Minimum set of sample programs are designed unit wise covering all the topics in the theory . Additional set of programs are designed basing on problem solving

- <u>Sessional marks : 50 marks</u> 1) Daily Evaluation (Includes Record, Observation & regular performance) 30 marks
  - 2) Attendance -5 marks
  - 3) Internal Exam 10 marks
  - 4) Viva Voce 5 marks

#### **Daily Evaluation (30 marks)**

Every Student must execute minimum set of sample programs to secure 60% of marks in Daily Evaluation i.e. 18 Marks and to appear in external examination.

In addition to that if a student finishes the minimum set and 5 programs from additional set of programs would secure 80% of marks in Daily Evaluation i.e. 24 Marks.

If a student finishes all the programs in both the set s will secure 100% of marks in Daily Evaluation

#### **Internal Exam (10 marks)**

- Every student is given 4 questions in the internal exam out of which the difficulty level of 2 questions is easy / medium and 2 questions of difficulty level is high
- Each easy / medium level question carries 20% of marks and difficulty level question carries 30% of marks

#### External Exam (50 marks)

- Viva voce 10 marks
- Write up + Execution 40 marks

#### Write up + Execution (40 marks)

- Every student is given 4 questions in the external exam out of which the difficulty level of 2 questions is easy / medium and 2 questions of difficulty level is high
- Each easy / medium level question carries 30% of marks and difficulty level question carries 20% of marks.

# **INSTRUCTIONS TO STUDENTS:**

Students should use computer related components smoothly

- Students should not carry other items into lab.
- Students must wear the dress code and ID cards.
- Every student is given 4 questions in the external exam out of which the difficulty level of 2 questions is easy / medium and 2 questions of difficulty level is high
- Each easy / medium level question carries 30% of marks and difficulty level question carries 20% of marks.

### **GUIDELINES TO LAB PROGRAMMERS:**

- Lab Programmers must verify All the Systems whether they are working properly or not.
- Lab Programmers must verify All the other equipment's(devices like ACs).

### LAB RUBRICS:

| Key Performance<br>Criteria(KPC)<br>(25 pts)                                       | 4-Very Good                                                                                                                                      | 3-Good                                                                                                                                                                            | 2-Fair                                                                                                                                                                            | 1-Need to improve                                                                                                                                                              |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problem<br>Statement (2)                                                           | Detail understanding<br>of the problem (2)                                                                                                       | Understanding of the problem (2)                                                                                                                                                  | Basic understanding of the problem (1)                                                                                                                                            | Partial understanding of the problem (1)                                                                                                                                       |
| Experimental<br>Procedure/<br>algorithm/ flow<br>chart/ analysis<br>(4)            | The procedure is<br>explained and well<br>designed the problem<br>with appropriate<br>analysis (4)                                               | The procedure is<br>explained and<br>designed the<br>problem with<br>analysis (3)                                                                                                 | Missing some<br>experimental<br>procedure with partial<br>analysis (2)                                                                                                            | Missing major<br>experimental details<br>and analysis (1)                                                                                                                      |
| Implementation<br>(4)                                                              | Implement Optimal<br>solution with<br>appropriate results for<br>all the inputs                                                                  | Implement solution<br>with correct results<br>for most of the inputs                                                                                                              | implement solution<br>with the correct<br>answers for some<br>inputs and results<br>wrong answers for<br>some cases                                                               | Implement Solution<br>does not produce the<br>appropriate results for<br>the given inputs                                                                                      |
| Test Case<br>verification (3)                                                      | Produces correct<br>output for all possible<br>test cases(3)                                                                                     | Produces correct<br>output for most of<br>the test cases (2)                                                                                                                      | Produces correct<br>output for some of the<br>test cases (2)                                                                                                                      | Produces Wrong<br>output for most of the<br>test cases (1)                                                                                                                     |
| Viva voice / oral<br>presentation(5)                                               | In depth knowledge<br>on the concept and<br>answered all the<br>questions(5)                                                                     | Good knowledge on<br>the concept and<br>answered all the<br>questions(4)                                                                                                          | Basic knowledge on<br>the concept and<br>answered some of the<br>questions(3)                                                                                                     | With basic knowledge<br>on the concept and<br>answered few<br>questions(2)                                                                                                     |
| Presentation of<br>record /<br>documentation(4)                                    | Presented the content<br>effectively and<br>Submitted on time (4)                                                                                | Presented the<br>content and<br>Submitted on time<br>(3)                                                                                                                          | Presented the in-<br>complete content and<br>Submitted . (2)                                                                                                                      | Presented the wrong<br>content and submitted<br>in delay.(1)                                                                                                                   |
| Code of conduct<br>(courtesy, safety,<br>behavioral<br>aspects, ethics<br>etc.)(3) | While conducting the<br>procedure, the<br>student is in proper<br>dress code, always<br>respectful of others<br>and leaves the area<br>clean.(3) | While conducting the<br>procedure, the<br>student is in proper<br>dress code, many<br>times respectful of<br>others and leaves the<br>area clean only after<br>being reminded.(2) | While conducting the<br>procedure, the<br>student is in partial<br>dress code, sometimes<br>respectful of others<br>and leaves the area<br>clean only after being<br>reminded.(2) | While conducting the<br>procedure, the<br>student is not in<br>proper dress code,<br>not respectful of<br>others and leaves the<br>area messy even after<br>being reminded.(1) |

### **PRACTICAL 1: CONVERTING MILES TO KILOMETERS:**

### **1.Practical significance :**

1. Write comment to make your programs readable.

2.Use descriptive variables in your programs(Name of the variables should show- their purposes)

### 2.Relevant Program Outcomes :

PO1,PO2,PO3,PO4

### 3.Competency and practical skills :

Students can able to test applications by passing the parameter

### 4.Prerequisites :

Mathematical formulas

### **5.**Resources required :

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

### 6.Precautions:

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace.
- Power supplies and CRT monitors contain high voltage.

### 7.Algorithm/circuit/Diagram/Description:

Step 1: start

- Step 2: read no of miles.
- Step 3: convert miles to kilometers by multiplying 1.609.
- Step 4: print distance in kilometers.

Step 5: stop

### 8. Test cases: 2

### 9.Sample output:

| Sample test cases | Input | Output |
|-------------------|-------|--------|
| Test case 1       | 10    | 16.09  |
| Test case 2       | 2     | 3.218  |

1.what is operators?

2.type of operators?

### 11 .Exercise Questions :

- 1. Write a C program to generate a random number
- 2. Write program to convert months to days to hours to seconds?

### 2. SUPERMARKET COIN PROCESSOR

### 1. Practical significance :

1. Write comment to make your programs readable.

2. Use descriptive variables in your programs (Name of the variables should show their purposes)

### 2.Relevant Program Outcomes :

### PO1,PO2,PO3,PO4

### 3.Competency and practical skills :

Students can able to test applications by passing the parameter

### 4.Prerequisites :

Mathematical formulas and currency details about different countries.

### **5.Resources required :**

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

### 6.Precautions:

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace.
- Power supplies and CRT monitors contain high voltage.

### 7.Algorithm/circuit/Diagram/Description:

Step 1: Start. Step 2:Enter inputs for dollars,quarters,dimes,nickels,pennies Step 3: total\_cents=(dollars\*100)+(quarters \*25)+(dimes\*10)+(nickels\*5)+(pennies) Step 4:total\_dollars=(total\_cents)/100. Step 5: Change=( total\_cents)-( total\_dollars\*100). Step 6: Print total\_dollars. Step 7: print change. Step 8: Stop.

### 8. Test cases:

### 9.Sample output:

| SAMPLE      | TEST | INPUT                                         | OUPUT            |
|-------------|------|-----------------------------------------------|------------------|
| CASES       |      |                                               |                  |
| Test case 1 |      | Type in your 3 initials and press return> JRH | JRH Coin Credit  |
|             |      | JRH, please enter your coin information.      | Dollars: 9       |
|             |      | Number of \$ coins > 2                        | Change: 26 cents |
|             |      | Number of quarters> 14                        |                  |
|             |      | Number of dimes > 12                          |                  |
|             |      | Number of nickels > 25                        |                  |
|             |      | Number of pennies > 131                       |                  |
| Test case 2 |      | Type in your 3 initials and press return> JRH | JRH Coin Credit  |
|             |      | JRH, please enter your coin information.      | Dollars: 11      |
|             |      | Number of \$ coins > 3                        | Change: 26 cents |
|             |      | Number of quarters> 12                        |                  |
|             |      | Number of dimes > 14                          |                  |
|             |      | Number of nickels > 50                        |                  |
|             |      | Number of pennies > 175                       |                  |

### **10.**Practical Related Questions:

1. What are the basic data types associated with C?

#### 2.What are reserved words with a programming language?

### **11**.Exercise Questions :

- **1.** Write a C program to accept a coordinate point in a XY coordinate system and determine in which quadrant the coordinate point lies.
- Write a C program to find the eligibility of admission for a professional course based on the following criteria: Go to the editor
   Eligibility Criteria : Marks in Maths >=65 and Marks in Phy >=55 and Marks in Chem>=50 and

Total in all three subject >=190 or Total in Maths and Physics >=140

------ Input the marks obtained in Physics :65 Input the marks obtained in Chemistry :51 Input the marks obtained in Mathematics :72 Total marks of Maths, Physics and Chemistry : 188 Total marks of Maths and Physics : 137 The candidate is not eligible.

Expected Output :

The candidate is not eligible for admission.

### 3. WATER BILL PROBLEM

### **1.** Practical significance :

1. Write comment to make your programs readable.

2. Use descriptive variables in your programs (Name of the variables should show their purposes)

### 2.Relevant Program Outcomes :

### PO1,PO2,PO3,PO4

### 3.Competency and practical skills :

Students can able to test applications by passing the parameter.

### 4.Prerequisites :

Mathematical formulas and knowledge on oparetors.

### **5.Resources required :**

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

### 6.Precautions:

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace.
- Power supplies and CRT monitors contain high voltage.

### 7.Algorithm/circuit/Diagram/Description:

#### Step 1: Start.

Step 2:Enter inputs for current reading, previous reading, unpaid\_balance.

Step 3: total\_due=(current reading- previous reading)1.10+unpaid\_balance+35.

Step 4:if(unpaid\_balance>0)

then print "bill includes \$2.00 late charge on unpaid\_balance"

total\_due+=2

print total\_due

else

print "total\_due"

### 8. Test cases: 9.Sample output:

| SAMPLE TEST CASES | INPUT                                           | OUPUT                     |
|-------------------|-------------------------------------------------|---------------------------|
| Test case 1       | This program figures a water bill based on the  | Bill includes \$2.00 late |
|                   | demand charge                                   | charge on unpaid balance  |
|                   | (\$35.00) and a \$1.10 per 1000 gallons use     | of \$71.50                |
|                   | charge.                                         | Total due = \$152.50      |
|                   | A \$2.00 surcharge is added to accounts with an |                           |
|                   | unpaid balance.                                 |                           |

|             | Enter unpaid balance, previous and current                       |                           |
|-------------|------------------------------------------------------------------|---------------------------|
|             | meter readings on separate miles after the                       |                           |
|             | prompts. Press <return> or <enter> after typing</enter></return> |                           |
|             | each number.                                                     |                           |
|             | Enter unpaid balance> \$71.50                                    |                           |
|             | Enter previous meter reading> 4198                               |                           |
|             | Enter current meter reading> 4238                                |                           |
| Test case 2 | This program figures a water bill based on the                   | Bill includes \$2.00 late |
|             | demand charge                                                    | charge on unpaid balance  |
|             | (\$35.00) and a \$1.10 per 1000 gallons use                      | of \$71.50                |
|             | charge.                                                          | Total due = \$102.00      |
|             | A \$2.00 surcharge is added to accounts with an                  |                           |
|             | unpaid balance.                                                  |                           |
|             | Enter unpaid balance, previous and current                       |                           |
|             | meter readings on separate lines after the                       |                           |
|             | nromnts Press < return> or < enter> after typing                 |                           |
|             | each number                                                      |                           |
|             | Entor unnaid halancos \$51                                       |                           |
|             | Enter unpalu balance \$51                                        |                           |
|             | Enter previous meter reading> 4198                               |                           |
|             | Enter current meter reading> 4137                                |                           |
|             |                                                                  |                           |

#### 1.Diffrence between desion making statements and switch statements?

### **11**.Exercise Questions :

**1.** Write a C program to read roll no, name and marks of three subjects and calculate the total, percentage and division.

**2.** Write a C program to accept the height of a person in centimeter and categorize the person according to their height

### 4. Prime Numbers between 1 to N:

### 1. Practical significance :

1.Write comment to make your programs readable.

2.Use descriptive variables in your programs(Name of the variables should show- their purposes)

### 2.Relevant Program Outcomes :

PO1,PO2,PO3,PO4

### 3.Competency and practical skills :

Students can able to test applications by passing the parameter

### 4.Prerequisites :

Declarations and definitions of variables, functions, loops and definition of Prime Number.

### **5.Resources required :**

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

### 6.Precautions:

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace.
- Power supplies and CRT monitors contain high voltage.

### 7.Algorithm/circuit/Diagram/Description:

Algorithm Sieve of Eratosthenes is input: an integer n > 1. output: all prime numbers from 2 through n. let A be an array of Boolean values, indexed by integers 2 to n, initially all set to true. for i = 2, 3, 4, ..., not exceeding  $\sqrt{n}$ do if A[i] istrue for  $j = i^2, i^2+i, i^2+2i, i^2+3i, ...,$  not exceeding ndo A[j] := false

**return** all *i* such that *A*[*i*] **istrue** 

### 8. Test cases: 9.Sample output:

| SAMPLE TEST CASES | INPUT | OUPUT |
|-------------------|-------|-------|
| Test case 1       | 2     | 10    |
|                   | 5     | 17    |
|                   | 10    |       |
|                   |       |       |
| Test case 2       | 2     | 17    |
|                   | 7     | 17    |
|                   | 10    |       |

### **10.**Practical Related Questions:

1. What is the time complexity of algorithm used by you?

2. What is the best algorithm you can use to implement this program?

### **11**.Exercise Questions :

**1.** Write a C program to accept two integers and check whether they are equal or not.?

### **5.Bubble Sort:**

### 1. Practical significance :

1.Write comment to make your programs readable.

2.Use descriptive variables in your programs(Name of the variables should show their purposes)

### 2.Relevant Program Outcomes :

PO1,PO2,PO3,PO4

### 3.Competency and practical skills :

Students can able to test applications by passing the parameter.

A) Information about the topic in brief. i.e. how sorting works.

- B) Formulas related to the topic/s (Swapping of two numbers is required).
- C) Work out few examples and dry run before implementing the actual code.

### 4.Prerequisites :

Declarations and definitions of variables, functions, loops and concept of sorting, swapping.

### **5.Resources required :**

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

### 6.Precautions:

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace.
- Power supplies and CRT monitors contain high voltage.

### 7.Algorithm/circuit/Diagram/Description:

```
Bubble Sort:
beginBubbleSort(list)
for all elements of list
if list[i] > list[i+1]
swap(list[i], list[i+1])
end if
end for
return list
end BubbleSort
```

### 8. Test cases: 9.Sample output:

| SAMPLE TEST CASES | INPUT       | OUPUT                           |
|-------------------|-------------|---------------------------------|
| Test case 1       | 2           | 13479                           |
|                   | 5           | $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10$ |
|                   | 41397       |                                 |
|                   | 10          |                                 |
|                   | 10987654321 |                                 |
| Test case 2       | 1           | 02389                           |
|                   | 5           |                                 |
|                   | 8 9 3 2 0   |                                 |

### **10.Practical Related Questions:**

- 1. What is the time complexity of algorithm used by you?
- 2. What is the best algorithm you can use to implement this program?
- 3. Explain how merge sort works?
- 4. Explain Quick sort?
- 5. Why Quick Sort is preferred than Merge sort in most of the applications?

### **11.Exercise Questions :**

1.Write a program in C to count the total number of words in a string.

2.Write a program in C to count total number of alphabets, digits and special characters in a string

### 6.Text Editor:

### 1. Practical significance :

Translating given algorithm to valid program.

### 2.Relevant Program Outcomes :

PO1,PO2,PO3,PO4

### 3.Competency and practical skills :

Students can able to test applications by passing the parameter

### 4.Prerequisites :

```
Problem Constant MAX_LEN 100 /* maximum size of a string */
Problem Inputs
char source[MAX_LEN] /* source string */
char command /* edit command */
Problem Output
char source[MAX_LEN] /* modified source string */
```

### **5.**Resources required :

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

### 6.Precautions:

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace. Power supplies and CRT monitors contain high voltage

### 7.Algorithm/circuit/Diagram/Description:

1.Enter the source string.

2.create a menu bar using control structure staments.

### 8. Test cases: 9.Sample output:

| SAMPLE TEST CASES | INPUT                                   | OUPUT                    |
|-------------------|-----------------------------------------|--------------------------|
| Test case 1       | Enter the source string:                | New source: Internet     |
|                   | > Internet use is growing rapidly.      | use is rapidly           |
|                   | Enter D(Delete), I(Insert), F(Find), or |                          |
|                   | Q(Quit)> d                              |                          |
|                   | String to delete> growing               |                          |
| Test case 2       | Enter D(Delete), I(Insert), F(Find), or | '.' found at position 23 |
|                   | Q(Quit)> F                              |                          |
|                   | String to find>.                        |                          |

### **10.Practical Related Questions:**

2. Define memmove?

1. Reverse words in a given string without string functions

- 3. Define strspn?
- 4. Define strtok?
- 5. Define strnicmp?

### **11**.Exercise Questions :

1. Write a program in C to count a total number of duplicate elements in an array

### 7. ARITHMETIC WITH COMMON FRACTIONS

### 1. Practical significance :

Translating given algorithm to valid program.

### 2.Relevant Program Outcomes :

PO1,PO2,PO3,PO4

### 3.Competency and practical skills :

Students can able to test applications by passing the parameter

### 4.Prerequisites :

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.

- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace.
- Power supplies and CRT monitors contain high voltage.

### **5.Resources required :**

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

#### **6.Precautions:**

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace. Power supplies and CRT monitors contain high voltage.

### 7.Algorithm/circuit/Diagram/Description:

/\* calculating the numerator \*/

```
x3 = (x1 * y2) + (x2 * y1);
```

```
/* calculating the numerator */
    y3 = (y1 * y2);
/* simplifying the fraction */
    if (x3 > y3)
        div = y3;
    else
        div = x3;
    for (i = div; i > 0; i--)
        if (x3 % i == 0 && y3 % i == 0) {
            x3 = x3 / i;
            y3 = y3 / i;
            y3 = y3 / i;
        }
        }
    }
}
```

### 8. Test cases: 9.Sample output.

| SAMPLE TEST CASES | INPUT 1                                    | OUPUT                |
|-------------------|--------------------------------------------|----------------------|
| Test case 1       | Enter a common fraction as two             | Input invalid—       |
|                   | integers separated by a slash> 3/-4        | denominator must be  |
|                   |                                            | positive             |
| Test case 2       | Enter a common fraction as two integers    | gcd of 44 and 32?> 4 |
|                   | separated by a slash> 3/4                  | find_gcd returning 4 |
|                   | Enter an arithmetic operator (+,-,*, or /) | 3/4 + 5/8 = 11/8     |
|                   | >+                                         |                      |
|                   | Enter a common fraction as two             |                      |
|                   | integers separated by a slash> 5/8         |                      |
|                   | Entering find_gcd with n1 = 44, n2 = 32    |                      |
|                   | Do another problem? (y/n)>n                |                      |

- 1. What is modulus operator?
- 2. Define complex number?
  - 3. Difference b/w "/" & "%" operator?

### **11**.Exercise Questions :

**1.** C program to print all natural numbers upto N without using semi-colon

### 8. TO FIND THE FACTORIAL OF A GIVEN NUMBER N

### 1. Practical significance :

Find out the value of the factorial number. How to use operators and loops.

### 2.Relevant Program Outcomes :

PO1,PO2,PO3,PO

### 3.Competency and practical skills :

Students can able to test applications by passing the parametr

### 4.Prerequisites :

The factorial of a number is the product of all the integers from 1 to that number. For example, the factorial of 6 (denoted as 6!) is 1\*2\*3\*4\*5\*6 = 720. Factorial is not defined for negative numbers and the factorial of zero is one, 0! = 1.

### **5.Resources required :**

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

### 6.Precautions:

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace. Power supplies and CRT monitors contain high voltage.

### 7.Algorithm/circuit/Diagram/Description:

step 1. Start step 2. Read the number n step 3. [Initialize] i=1, fact=1 step 4. Repeat step 4 through 6 until i=n step 5. fact=fact\*i step 6. i=i+1 step 7. Print fact step 8. Stop

### 8. Test cases: 9.Sample output:

| SAMPLE TEST CASES | INPUT 1                            | OUPUT               |
|-------------------|------------------------------------|---------------------|
| Test case 1       | Enter a number to find factorial>2 | Factorial of 2 is 2 |
| Test case 2       | Enter a number to find factorial>3 | Factorial of 3 is 6 |

### **10.Practical Related Questions:**

### **11**.Exercise Questions :

**1.** C program to print sum of two integers witht out +

#### **9.** COLLECTING AREA FOR SOLAR-HEATED HOUSE – FILES AND FUNCTIONS

#### **1.** Practical significance :

How to use functions and multi way selection. Develop C program using functions and conditional control statements.

### 2.Relevant Program Outcomes :

#### PO1,PO2,PO3,PO4

### 3.Competency and practical skills :

Students can able to test applications by passing the parameter

### 4.Prerequisites :

The formula for approximating the desired collecting area ( A ) is A=heat loss/energy resource

In turn, heat loss is computed as the product of the heating requirement, the floor space, and the heating degree days. We compute the necessary energy resource by multiplying the efficiency of the collection method by the average solar insulation per day and the number of days.

In this program we will use three input sources: the two data files and the keyboard. We can now identify the problem's data requirements and develop an algorithm.

### **5.**Resources required :

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

### 6.Precautions:

• Check Whether the computer is getting proper power or not.

- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace. Power supplies and CRT monitors contain high voltage

### 7.Algorithm/circuit/Diagram/Description:

Step1. Determine the coldest month and the average heating degree days for this month.

Step 2.Find the average daily solar insolation per ft 2 for the coldest month.

Step 3.Get from the user the other problem inputs: heating\_req , efficiency , and floor\_space .

Step 4.Estimate the collecting area needed.

Step 5. Display results.

#### STEP 1 REFINEMENT

We will introduce three new variables to use in our refinement—a counter, ct, to keep track of our position in the heating degree days file, an integer variable to record file status, and an integer variable next\_hdd to hold each heating degree days value in turn.

Additional Program Variables

- ct /\* position in file \*/
- status /\* input status \*/
- next\_hdd /\* one heating degree days value \*/
- 1.1 Scan first value from heating degree days file into heat\_deg\_days , and initialize coldest\_mon to 1.
- 1.2 Initialize ct to 2.
- 1.3 Scan a value from the file into  $\mbox{next\_hdd}$  , saving status .
- 1.4 As long as no faulty data or not at end of file, repeat
- 1.5 if next\_hdd is greater than heat\_deg\_days
- 1.6 Copy next\_hdd into heat\_deg\_days .
- 1.7 Copy ct into coldest\_mon .
- 1.8 Increment ct.
- 1.9 Scan a value from the file into next\_hdd , saving status .

#### **STEP 4 REFINEMENTS**

- 4.1 Calculate heat\_loss as the product of heating\_req, floor\_space, and heat\_deg\_days.
- 4.2 Calculate energy\_resrc as the product of efficiency (converted to hundredths), solar\_insol, and the number of days in the coldest month.

4.3 Calculate collect area as heat\_loss divided by energy\_resrc . Round result to nearest whole square foot.

W e will develop a separate function for finding the number of days in a month, a value needed in step 4.2

### 8. Test cases: 9.Sample output:

| SAMPLE TEST CASES | INPUT                                                                                                                                                                                                                                          | OUPUT                                                                                                                                                                                                                   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test case 1       | What is the approximate heating<br>requirement (BTU / degree day ft^2)<br>of this type of construction?<br>=>9<br>What percent of solar insolation will<br>be converted to usable heat?<br>=> 60<br>What is the floor space (ft^2)?<br>=> 1200 | To replace heat loss of 11350800 BTU in<br>the coldest month (month 12) with<br>available solar insolation of 500 BTU / ft^2<br>/ day, and an<br>efficiency of 60 percent, use a solar<br>collecting area of 1221 ft^2. |

1.what is the difference between formal arguments actual arguments? 2.categorie of functions?

### **11**.Exercise Questions :

1.Write a program in C to check whether a given number is a Kaprekar number or not.

#### **10.** UNIVERSAL MEASUREMENT CONVERSION:

### **1.Practicalsignificance :**

How to use functions and multi way selection.

Develop C program using functions and conditional control statements.

### 2.Relevant Program Outcomes :

### PO1,PO2,PO3,PO4

### 3.Competency and practical skills :

Students can able to test applications by passing the parameter

### 4.Prerequisites :

### Structured Data Type

name /\* character string such as "milligrams" \*/
abbrev /\* shorter character string such as "mg" \*/
class /\* character string "liquid\_volume", "distance", or "mass" \*/
standard /\* number of standard units that are equivalent to this unit \*/

### **5.Resources required :**

| Software Requirements<br>(Recommend) | Operating System : Windows7/Linux/Ubuntu<br>Application Software : Java SE 9<br>Text Editor : Notepad |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|
| Hardware Requirements<br>(Recommend) | Monitor : 15" 1024x768 LCD<br>Ram : 4GB<br>Harddrive: 512GB                                           |

### 6.Precautions:

- Check Whether the computer is getting proper power or not.
- Ensure the keyboard, mouse and monitor are properly working.
- Ensure that there are no power fluctuations while executing the commands.
- Safe working conditions help prevent injury to people and damage to computer equipment.
- A safe work space is clean, organized, and properly lighted. Everyone must understand and follow safety procedures.
- Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities in the home and the workplace. Power supplies and CRT monitors contain high

### 7.Algorithm/circuit/Diagram/Description:

### 8. Test cases: 9.Sample output

| SAMPLE TEST CASES | INPUT 1                            | OUPUT                            |
|-------------------|------------------------------------|----------------------------------|
| Test case 1       | Enter a conversion problem or q to | >450 km miles                    |
|                   | quit.                              | Attempting conversion of         |
|                   | To convert 25 kilometers to miles, | 450.0000 km to miles             |
|                   | you would enter                    | 450.0000km = 279.6247 miles      |
|                   | > 25 kilometers miles              |                                  |
|                   | or, alternatively,                 |                                  |
|                   | > 25 km mi                         |                                  |
| Test case 2       | Enter a conversion problem or q to | > 100 meters gallons             |
|                   | quit.                              | Attempting conversion of         |
|                   | > 2.5 qt l                         | 100.0000 meters to gallons       |
|                   | Attempting conversion of 2.5000    | Cannot convert meters (distance) |
|                   | qt to 1                            | to gallons (liquid_volume)       |
|                   | 2.5000qt = 2.3659 l                |                                  |
|                   | Enter a conversion problem or q    |                                  |
|                   | to quit.                           |                                  |

1. what is the use of nested structure?

2.how to access structure member from structure?

### **11**.Exercise Questions :

1. Traffic light , traffic light simulation.

